Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main aim of this article is to present some novel geometric properties for three distinct normalizations of the generalized k-Bessel functions, such as the radii of uniform convexity and of α-convexity. In addition, we show that the radii of α-convexity remain in between the radii of starlikeness and convexity, in the case when α ∈ [ 0 , 1 ] and they are decreasing with respect to the parameter α. The key tools in the proof of our main results are infinite product representations for normalized k-Bessel functions and some properties of real zeros of these functions.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20220235
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- Department of Mathematics, Faculty of Education, Ağrı İbrahim Çeçen University, Ağrı, Turkey
Bibliografia
- [1] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), no. 1, 87–92.
- [2] P. L. Duren, Univalent Functions, Grundlehren Math. Wiss. vol. 259, Springer, New York, 1983.
- [3] I. Graham and G. Kohr, Geometric Function Theory in One and Higher Dimensions, CRC Press, Boca Raton, 2003.
- [4] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), no. 1, 189–196, DOI: https://doi.org/10.2307/2160026.
- [5] V. Ravichandran, On uniformly convex functions, Ganita 53 (2002), no. 2, 117–124.
- [6] R. Bharti, R. Parvatham, and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math. 28 (1997), no. 1, 17–32, DOI: https://doi.org/10.5556/j.tkjm.28.1997.4330.
- [7] S. Kanas and A. Wisniowska, Conic region and k-uniform convexity, J. Comput. Appl. Math 105 (1999), no. 1–2, 327–336, DOI: https://doi.org/10.1016/S0377-0427(99)00018-7.
- [8] S. Kanas and A. Wisniowska, Conic domains and starlike function, Revue Roumaine des Mathematiques Pures et Appliquees 45 (2000), no. 4, 647–657.
- [9] S. Kanas and T. Yaguchi, Subclasses of k-uniform convex and starlike functions defined by generalized derivative, II, Publ. Inst. Math. (Beograd) (N.S.) 69 (2001), no. 83, 91–100.
- [10] P. T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica (Cluj) 11 (1969), 127–133.
- [11] P. T. Mocanu and M. O. Reade, The radius of α-convexity for the class of starlike univalent functions α real, Proc. Amer. Math. Soc. 51 (1975), no. 2, 395–400, DOI: https://doi.org/10.2307/2040329.
- [12] G. V. Milovanoviacute;, V. Gupta, and N. Malik, (p, q)-Beta functions and applications in approximation, Bol. Soc. Mat. Mex. 24 (2018), 219–237, DOI: https://doi.org/10.1007/s40590-016-0139-1.
- [13] K. Nantomah, E. Prempeh, and S. Twum, On a (p, k)-analogue of the Gamma function and some associated inequalities, Moroccan J. Pure Appl. Anal. 2 (2017), no. 2, 79–90, DOI: https://doi.org/10.7603/s40956-016-0006-0.
- [14] R. Diaz and E. Pariguan, On hypergeometric functions and Pochhammer k -symbol, Divulgaciones Matemáticas 15 (2007), no. 2, 179–192.
- [15] R. Diaz and E. Pariguan, Feynman-Jackson integrals, J. Nonlinear Math. Phys. 13 (2006), no. 3, 365–376, DOI: https://doi.org/10.2991/jnmp.2006.13.3.4.
- [16] R. Díaz, C. Ortiz, and E. Pariguan, On the k -gamma q-distribution, Central European J. Math. 8 (2010), no. 3, 448–458, DOI: https://doi.org/10.2478/s11533-010-0029-0.
- [17] A. Tassaddiq, A new representation of the k -gamma functions, Mathematics 7 (2019), no. 2, 133, DOI: https://doi.org/10.3390/math7020133.
- [18] K. Nantomah and E. Prempeh, Some inequalities for the k -digamma functions, Mathematica Æterna 4 (2014), no. 5, 521–525.
- [19] E. Toklu, Radii of starlikeness and convexity of generalized k-Bessel function, J. Appl. Anal. 29 (2023), no. 1, 171–185, DOI: https://doi.org/10.1515/jaa-2022-2005.
- [20] I. Aktaş, E. Toklu, and H. Orhan, Radii of uniform convexity of some special functions, Turk. J. Math. 42 (2018), no. 6, 3010–3024, DOI: https://doi.org/10.3906/mat-1806-43.
- [21] Á Baricz, P. A. Kupán, and R. Szász, The radius of starlikeness of normalized Bessel functions of the first kind, Proc. Amer. Math. Soc. 142 (2014), no. 6, 2019–2025, DOI: https://doi.org/10.1090/S0002-9939-2014-11902-2.
- [22] Á. Baricz, H. Orhan, and R. Szász, The radius of α-convexity of normalized Bessel functions of the first kind, Comput. Methods Funct. Theory 16 (2016), no. 1, 93–103, DOI: https://doi.org/10.1007/s40315-015-0123-1.
- [23] R. K. Brown, Univalence of Bessel functions, Proc. Amer. Math. Soc. 11 (1960), no. 2, 278–283, DOI: https://doi.org/10.2307/2032969.
- [24] E. Deniz and R. Szász, The radius of uniform convexity of Bessel functions, J. Math. Anal. Appl. 453 (2017), no. 1, 572–588, DOI: https://doi.org/10.1016/j.jmaa.2017.03.079.
- [25] E. Toklu, Radii of starlikeness and convexity of q-Mittag-Leffler functions, Turk. J. Math. 43 (2019), no. 5, 2610–2630, DOI: https://doi.org/10.3906/mat-1907-54.
- [26] E. Toklu, Radii of starlikeness and convexity of generalized Struve functions, Hacet. J. Math. Stat. 49 (2020), no. 4, 1216–1233, DOI: https://doi.org/10.15672/hujms.518154.
- [27] E. Toklu, İ. Aktaş, and H. Orhan, Radii problems for normalized q-Bessel and Wright functions, Acta Univ Sapientiae Mathematica 11 (2019), no. 1, 203–223, DOI: https://doi.org/10.2478/ausm-2019-0016.
- [28] S. R. Mondal and M. S. Akel, Differential equation and inequalities of the generalized k-Bessel functions, J. Inequal. Appl. 2018 (2018), no. 175, 1–14, DOI: https://doi.org/10.1186/s13660-018-1772-1.
- [29] S. Mubeen, M. Naz, and G. Rahman, A note on k -hypergeometric differential equations, J. Inequal. Spec. Funct. 4 (2013), no. 3, 38–43.
- [30] E. C. Titchmarsh, The Theory of Functions, Oxford University Press, Ely House, London W., New York, 1939.
- [31] H. Hochstadt, The Functions of Mathematical Physics, Dover Publications, New York, 2012.
- [32] Á Baricz and R. Szász, The radius of convexity of normalized Bessel functions of the first kind, Anal. Appl. 12 (2014), no. 05, 485–509, DOI: https://doi.org/10.1142/S0219530514500316.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-306b6d39-7055-4025-b740-4a8f56b13ef4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.