PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation of chopped steel wool fiber at various ratio reinforced cementitious composite panels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The flexural toughness of chopped steel wool fiber reinforced cementitious composite panels was investigated. Reinforced cementitious composite panels were produced by mixing of chopped steel wool fiber with a ratio range between 0.5% to 6.0% and 0.5% as a step increment of the total mixture weight, where the cement to sand ratio was 1:1.5 with water to cement ratio of 0.45. The generated reinforced cementitious panels were tested at 28 days in terms of load-carrying capacity, deflection capacities, post-yielding effects, and flexural toughness. The inclusion of chopped steel wool fiber until 4.5% resulted in gradually increasing load-carrying capacity and deflection capacities while, provides various ductility, which would simultaneously the varying of deflection capability in the post-yielding stage. Meanwhile, additional fiber beyond 4.5% resulted in decreased maximum load-carrying capacity and increase stiffness at the expense of ductility. Lastly, the inclusion of curves gradually.
Twórcy
  • Geopolymer & Green Technology, Center of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
  • Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Malaysia
  • Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Malaysia
  • Geopolymer & Green Technology, Center of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
  • Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Malaysia
  • Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
  • Omar Al-Mukhtar Universiti, Civil Engineering Department, Libya
Bibliografia
  • [1] Rajak D. K., Pagar D. D., Menezes P. L., and Linul E., “Fiber-reinforced polymer composites: Manufacturing, properties, and applications”, Polymers 11: p. 1667, 2019. https://doi.org/10.3390/polym11101667
  • [2] Rajak D.K., Pagar D.D., Kumar R., and Pruncu C.I., “Recent progress of reinforcement materials: A comprehensive overview of composite materials”, Journal of Materials Research and Technology, 8: pp. 6354-6374, 2019. https://doi.org/10.1016/j.jmrt.2019.09.068
  • [3] Cejuela E., Negro V., and del Campo J. M., “Evaluation and Optimization of the Life Cycle in Maritime Works”, Sustainability 12: 4524, 2020. https://doi.org/10.3390/su12114524
  • [4] Pushkar S. and Ribakov Y., “Life-Cycle Assessment of Strengthening Pre-Stressed Normal-Strength Concrete Beams with Different Steel-Fibered Concrete Layers”, Sustainability 12: p. 7958. 2020. https://doi.org/10.3390/su12197958
  • [5] Rashiddadash P., Ramezanianpour A. A., and Mahdikhani M., “Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice”, Construction and Building Materials 51: pp. 313-320, 2014. https://doi.org/10.1016/j.conbuildmat.2013.10.087
  • [6] Felekoğlu B.,Türkel S., and Altuntaş Y., “Effects of steel fiber reinforcement on surface wear resistance of self-compacting repair mortars”, Cement and Concrete Composites 29: pp. 391-396, 2007. https://doi.org/10.1016/j.cemconcomp.2006.12.010
  • [7] Abdulkareem M., Havukainen J., and Horttanainen M., “How environmentally sustainable are fibre reinforced alkali-activated concretes?”, Journal of Cleaner Production 236: p. 117601, 2019. https://doi.org/10.1016/j.jclepro.2019.07.076
  • [8] Zhang P., Zhao -N., Li Q.-F., Wang P., and Zhang T.H., “Flexural toughness of steel fiber reinforced high performance concrete containing nano-SiO2 and fly ash”, The Scientific World Journal 1-11 2014. https://doi.org/10.1155/2014/403743
  • [9] Faris, M.A., Abdullah, M.M.A.B., Ismail, K.N., Mortar, N.A.M., Hashim, M.F.A. and Hadi, A. “Pull-Out Strength of Hooked Steel Fiber Reinforced Geopolymer Concrete”, In IOP Conference Series: Materials Science and Engineering 55: pp. 012-080, 2019. https://doi:10.1088/1757-899X/551/1/012080
  • [10] Aggelis D.G., Soulioti D., Barkoula N.M., Paipetis A.S., Matikas T.E., and Shiotani T., “Acoustic emission behavior of steel fibre reinforced concrete under bending”, Construction and Building Materials 23: pp. 32-40, 2009. https://doi.org/10.1016/j.conbuildmat.2009.06.042
  • [11] Ragalwar K., Heard W. F., Williams B. A., Kumar D., and Ranade R., “On enhancing the mechanical behavior of ultra-high performance concrete through multi-scale fiber reinforcement”, Cement and Concrete Composites 105: p. 103422, 2020. https://doi.org/10.1016/j.cemconcomp.2019.103422
  • [12] Amer, Akrm A. Rmdan, Mohd Mustafa Al Bakri Abdullah, Yun Ming Liew, Ikmal Hakem A. Aziz, Jerzy J. Wysłocki, Muhammad Faheem Mohd Tahir, Wojciech Sochacki, Sebastian Garus, Joanna Gondro, and Hetham A.R. Amer, “Optimizing of the Cementitious Composite Matrix by Addition of Steel Wool Fibers (Chopped) Based on Physical and Mechanical Analysis”, Materials 14: p. 1094, 2021. https://doi.org/10.3390/ma14051094
  • [13] Sharma, A.K., Bhandari, R., Aherwar, A. and Rimašauskienė, R., “Matrix materials used in composites: A comprehensive study”, Materials Today: Proceedings 21: pp. 1559-1562, 2020. https://doi.org/10.1016/j.matpr.2019.11.086
  • [14] García A., Norambuena-C. J., and Partl, M.N., “A parametric study on the influence of steel wool fibers in dense asphalt concrete”, Materials and Structures 47: 1559-1571, 2014. https://doi.10.1617/s11527-013-0135-0
  • [15] Ponikiewski T., Katzer J., Bugdol M., and Rudzki M., “Determination of 3D porosity in steel fibre reinforced SCC beams using X-ray computed tomography”, Construction and Building Materials 68: pp. 333-340, 2014. https://doi.org/10.1016/j.conbuildmat.2014.06.064
  • [16] Koenig A., “Analysis of air voids in cementitious materials using micro X-ray computed tomography (μXCT)”, Construction and Building Materials 244:118313, 2020. https://doi.org/10.1016/j.conbuildmat.2020.118313
  • [17] Chajec A., and Sadowski L., “The Effect of Steel and Polypropylene Fibers on the Properties of Horizontally Formed Concrete”, Materials 13: p. 5827, 2020. https://doi.org/10.3390/ma13245827
  • [18] Zhou S., Xie L., Jia Y., and Wang C. “Review of cementitious composites containing polyethylene fibers as repairing materials”, Polymers 12: p. 2624, 2020. https://doi.org/10.3390/polym12112624
  • [19] Martinelli E., Pepe M., and Fraternali F., “Meso-Scale Formulation of a Cracked-Hinge Model for Hybrid Fiber-Reinforced Cement Composites”, Fibers 8: p. 56, 2020. https://doi.org/10.3390/fib8090056
  • [20] Zhou H., Jia B., Huang H., and Mou Y., “Experimental study on basic mechanical properties of basalt fiber reinforced concrete “, Materials (Basel) 13: p. 1362, 2020. https://doi.org/10.3390/ma13061362
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-306b571b-86f4-4395-9e2c-3412077869f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.