PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatio-temporal variability of the phytoplankton biomass in the Levantine basin between 2002 and 2015 using MODIS products

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Levantine basin in the Eastern Mediterranean Sea is subject to spatial and seasonal variations in primary production and physical-chemical properties both on a short and long-term basis. In this study, the monthly means of daily MODIS product images were averaged between 2002 and 2015, and used to characterize the phytoplankton blooms in different bioregions of the Levantine basin. The selected products were the sea surface temperature (SST), the chlorophyll-a concentration (Chl-a), the diffuse attenuation coefficient for downwelling irradiance at 490 nm (Kd_490) and the colored dissolved organic matter index (CDOM_index). Our results showed that phytoplankton blooms were spatially and temporally variable. They occurred in late autumn at the Nile Delta, in early spring and late summer at the eastern coastline, and in spring at the northeastern coastline. The northern coastline and the open water had a common bloom occurring in winter. The Nile Delta was found to be the most productive area of the Levantine basin showing high Chl-a. Kd_490 and Chl-a present a parallel co-variation indicating a dominance of Case 1 waters in the Levantine basin. The CDOM_index shows a phase shift with the Chl-a fluctuation. A strong inverse correlation was observed between both Chl-a and CDOM_index with SST, connoting an indirect relation represented by a depression of CDOM in summer by photobleaching, and a suppression of the chlorophyll-a concentration due to water stratification, together with nutrient stress. An overestimation of the Chl-a values had been signaled by the use of the CDOM_index, suggesting a correction plan in a latter study.
Czasopismo
Rocznik
Strony
153--165
Opis fizyczny
Bibliogr. 44 poz., mapy, rys., tab., wykr.
Twórcy
  • National Center for Remote Sensing, National Council for Scientific Research (CNRS), Beirut, Lebanon
autor
  • National Center for Remote Sensing, National Council for Scientific Research (CNRS), Beirut, Lebanon
autor
  • National Center for Marine Sciences, National Council for Scientific Research (CNRS), Batroun, Lebanon
  • National Center for Marine Sciences, National Council for Scientific Research (CNRS), Batroun, Lebanon
autor
  • National Center for Remote Sensing, National Council for Scientific Research (CNRS), Beirut, Lebanon
Bibliografia
  • [1] Abboud-Abi Saab, M., 1992. Day-to-day variation in phytoplankton assemblages during spring blooming in a fixed station along the Lebanese coastline. J. Plankton Res. 14 (8), 1099—1115, http://dx.doi.org/10.1093/plankt/14.8.1099.
  • [2] Abboud-Abi Saab, M., Fakhri, M., Sadek, E., Matar, N., 2008. An estimate of the environmental status of Lebanese littoral waters using nutrients and chlorophyll-a as indicators. Lebanese Sci. J. 9 (1), 43—60.
  • [3] Abdel-Moati, M. A., 1990. Particulate organic matter in the subsurface chl-a maximum layer of the Southeastern Mediterranean. Oceanol. Acta 13 (3), 307—315.
  • [4] Antoine, D., Morel, A., André, J. M., 1995. Algal pigment distribution and primary production in the eastern Mediterranean as derived from coastal zone color scanner observations. J. Geophys. Res. 100 (C8), 16193—16209, http://dx.doi.org/10.1029/95JC00466.
  • [5] Austin, R. W., Petzold, T. J., 1981. The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner. Oceanography from Space, vol. 13. Plenum Press, 239—256, http://dx.doi.org/10.1007/978-1-4613-3315-9_29.
  • [6] Azov, Y., 1986. Seasonal patterns of phytoplankton productivity and abundance in nearshore oligotrophic waters of the Levant Basin (Mediterranean). J. Plankton Res. 8 (1), 41—53, http://dx.doi.org/10.1093/plankt/8.1.41.
  • [7] Bethoux, J. P., Morin, P., Madec, C., Gentili, B., 1992. Phosphorus and nitrogen behaviour in the Mediterranean Sea. Deep Sea Res. 39 (9), 1641—1654, http://dx.doi.org/10.1016/0198-0149(92)90053-V.
  • [8] Brando, V., Dekker, A., Park, Y., Schroeder, T., 2012. Adaptive semianalytical inversion of ocean colour radiometry in optically complex waters. Appl. Optics 51 (15), 2808—2833, http://dx.doi.org/10.1364/AO.51.002808.
  • [9] Caddy, J. F., 1998. Issues in Mediterranean Fisheries Management: Geographical Units and Effort Control: Studies and reviews No. 70. FAO, Rome, 56 pp.
  • [10] Cloern, J. E., 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries. Cont. Shelf Res. 7 (11—12), 1367—1381, http://dx.doi.org/10.1016/0278-4343(87)90042-2.
  • [11] Coble, P. G., 2007. Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev. 107 (2), 402—418, http://dx.doi.org/10.1021/cr050350+.
  • [12] Devlin, M., Schroeder, T., McKinna, L., Brodie, J., Brando, V., Dekker, A., 2012. Monitoring and mapping of flood plumes in the Great Barrier Reef based on in situ and remote sensing observations. In: Chang, N. (Ed.), Environmental Remote Sensing and Systems Analysis, CRC Press, Boca Raton, 147—190, (Chapter 8).
  • [13] Dowidar, N. M., 1984. Phytoplankton biomass and primary productivity of the southeastern Mediterranean. Deep Sea Res. Pt. II 31 (6—8), 983—1000, http://dx.doi.org/10.1016/0198-0149(84)90052-9.
  • [14] EIMP-CWMP, 2007. Annual report on status of the water quality of the Egyptian Mediterranean coastal waters during 2006. The Egyptian Environment Affair Agency, http://www.eeaa.gov.eg/eimp/reports/ArrAnualMed2006.pdf.
  • [15] Harding, L. W., Meeson, B. W., Fisher, T. R., 1986. Phytoplankton production in two east coast estuaries: photosynthesis-lightfunctions and patterns of carbon assimilation in Chesapeake and Delaware bays. Estuar. Coast. Shelf Sci. 23 (6), 773—806, http://dx.doi.org/10.1016/0272-7714(86)90074-0.
  • [16] Hedges, J. I., Keil, R. G., 1995. Sedimentary organic preservation: an assessment and speculative synthesis. Mar. Chem. 49 (2—3), 81—115, http://dx.doi.org/10.1016/0304-4203(95)00008-F.
  • [17] Karakaya, N., Evrendilek, F., 2011. Monitoring and validating spatiotemporal dynamics of biogeochemical properties in Mersin Bay (Turkey) using Landsat ETM+. Environ. Monit. Assess. 181 (1), 457—464, http://dx.doi.org/10.1007/s10661-010-1841-5.
  • [18] Kennedy, K., Schroeder, T., Shaw, M., Haynes, D., Lewis, S., Bentley, C., Paxman, C., Carter, S., Brando, V., Bartkow, M., Hearn, L., Mueller, J., 2012. Long term monitoring of photosystem II herbicides — correlation with remotely sensed freshwater extent to monitor changes in the quality of water entering the Great Barrier Reef, Australia. Mar. Pollut. Bull. 65 (4), 292—305.
  • [19] Kowalczuk, P., Darecki, M., Zablocka, M., Górecka, I., 2010. Validation of empirical and semi-analytical remote sensing algorithms for estimating absorption by Coloured Dissolved Organic Matter in the Baltic Sea from SeaWiFS and MODIS imagery. Oceanologia 52 (2), 171—196, http://dx.doi.org/10.5697/oc.52-2.171.
  • [20] Krom, M. D., Brenner, S., Kress, N., Neori, A., Gordon, L. I., 1992. Nutrient dynamics and new production in a warm-core eddy from the Eastern Mediterranean. Deep Sea Res. 39 (3), 467—480, http://dx.doi.org/10.1016/0198-0149(92)90083-6.
  • [21] Krom, M. D., Groom, S., Zohary, T., 2003. The Eastern Mediterranean. In: Black, K. D., Shimmield, G. B. (Eds.), The Biogeochemistry of Marine Systems. Blackwell Publ., Oxford, 91—122.
  • [22] Krom, M. D., Kress, N., Brenner, S., Gordon, L. I., 1991. Phosphorus limitation of primary productivity in the Eastern Mediterranean. Limnol. Oceanogr. 36 (3), 424—432, http://dx.doi.org/10.4319/lo.1991.36.3.0424.
  • [23] Lavender, S. J., Moufaddal, W. M., Pradhan, Y. D., 2009. Assessment of temporal shifts of chlorophyll levels in the Egyptian Mediterranean shelf and satellite detection of the Nile bloom. Egyptian J. Aquat. Res. 35 (2), 121—135.
  • [24] Lee, Z.-P., 2005. A model for the diffuse attenuation coefficient of downwelling irradiance. J. Geophys. Res. 110 (C2), http://dx.doi.org/10.1029/2004jc002275.
  • [25] Lehman, P. W., 1992. Environmental factors associated with longterm changes in chlorophyll concentration in the Sacramento-San Joaquin delta and Suisun bay, California. Estuaries 15 (3), 335—348, http://dx.doi.org/10.2307/1352781.
  • [26] Mann, K. H., Lazier, J. R. N., 2006. Dynamics of Marine Ecosystems: Biological—Physical Interactions in the Oceans, 3rd edn. Blackwell Publ., Malden, 496 pp.
  • [27] Morel, A., Claustre, H., Gentili, B., 2010. The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance. Biogeosciences 7 (10), 3139—3151, http://dx.doi.org/10.5194/bg-7-3139-2010.
  • [28] Morel, A., Gentili, B., 2009. A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data. Remote Sens. Environ. 113 (5), 998—1011, http://dx.doi.org/10.1016/j.rse.2009.01.008.
  • [29] Morel, A., Huot, Y., Gentili, B., Werdell, P. J., Hooker, S. B., Franz, B. A., 2007. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 111 (1), 69—88, http://dx.doi.org/10.1016/j.rse.2007.03.012.
  • [30] O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A., Kahru, M., McClain, C. R., 1998. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. 103 (C11), 24937—24953, http://dx.doi.org/10.1029/98JC02160.
  • [31] O'Reilly, J. E., Maritorena, S., O'Brien, M. C., Siegel, D. A., Toole, D., Menzies, D., Smith, R. C., Mueller, J. L., Mitchell, B. G., Kahru, M., Chavez, F. P., 2000, SeaWiFS postlaunch calibration and validation analyses, part 3, S. B. Hooker & E. R. Firestone (eds.), NASA Tech. Memo 2000-206892 Vol. 11, NASA Goddard Space Flight Center, 49 pp.
  • [32] Pennock, J. R., 1985. Chlorophyll distribution in the Delaware estuary: regulation by light limitation. Estuar. Coast. Shelf Sci. 21 (5), 711—725, http://dx.doi.org/10.1016/0272-7714(85)90068-X.
  • [33] Premuzic, E. T., Benkovitz, C. M., Gaffney, J. S., Walsh, J. J., 1982. The nature and distribution of organic matter in the surface sediments of world oceans and seas. Org. Geochem. 4 (2), 63—77, http://dx.doi.org/10.1016/0146-6380(82)90009-2.
  • [34] Schroeder, T., Devlin, M., Brando, V. E., Dekker, A. G., Brodie, J., Clementson, L., McKinna, L., 2012. Inter-annual variability of wet season freshwater plume extent into the Great Barrier Reef lagoon based on satellite coastal ocean colour observations. Mar. Pollut. Bull. 65 (4—9), 210—223, http://dx.doi.org/10.1016/j.marpolbul.2012.02.022.
  • [35] Siegel, D. A., Maritorena, S., Nelson, N. B., Hansell, D. A., Lorenzi-Kayser, M., 2002. Global distribution and dynamics of colored dissolved and detrital organic materials. J. Geophys. Res. 107 (C12), 21.1—21.14, http://dx.doi.org/10.1029/2001JC000965.
  • [36] Su, J., Tian, T., Krasemann, H., Schartau, M., Wirtz, K., 2015. Response patterns of phytoplankton growth to variations in resuspension in the German Bight revealed by daily MERIS data in 2003 and 2004. Oceanologia 57 (4), 328—341, http://dx.doi.org/10.1016/j.oceano.2015.06.001.
  • [37] Tanhua, T., Hainbucher, D., Schroeder, K., Cardin, V., Álvarez, M., Civitarese, G., 2013. The Mediterranean Sea system: a review and an introduction to the special issue. Ocean Sci. 9 (5), 789—803, http://dx.doi.org/10.5194/os-9-789-2013.
  • [38] Turley, C. M., Bianchi, M., Christaki, U., Conan, P., Harris, J. R. W., Psarra, S., Ruddy, G., Stutt, E. D., Tselepides, A., Van Wambeke, F., 2000. Relationship between primary producers and bacteria in an oligotrophic sea — the Mediterranean and biogeochemical implications. Mar. Ecol.-Prog. Ser. 193, 11—18, http://dx.doi.org/10.3354/meps193011.
  • [39] Werdell, P. J., Bailey, S. W., 2005. An improved bio-optical data set for ocean color algorithm development and satellite data product validation. Remote Sens. Environ. 98 (1), 122—140, http://dx.doi.org/10.1016/j.rse.2005.07.001.
  • [40] Xing, X., Claustre, H., Wang, H., Poteau, A., D'Ortenzio, F., 2014. Seasonal dynamics in colored dissolved organic matter in the Mediterranean Sea: patterns and drivers. Deep-Sea Res. Pt. I 83, 93—101, http://dx.doi.org/10.1016/j.dsr.2013.09.008.
  • [41] Yacobi, Y. Z., Zohary, T., Kress, N., Hecht, A., Robarts, R. D., Waiser, M., Wood, A. M., Li, W. K. W., 1995. Chlorophyll distribution throughout the southeastern Mediterranean in relation to the physical structure of the water mass. J. Marine Syst. 6 (3), 179—190, http://dx.doi.org/10.1016/0924-7963(94)00028-A.
  • [42] Yeh E.-N., Barnes R. A., Darzi M., Kumar L., Early E. A., Johnson B. C., Mueller J. L., Trees C. C., 1997, Case Studies for SeaWiFS Calibration and Validation, Part 4, S.B. Hooker & E.R. Firestone (eds.), NASA Tech. Memo. 104566, Vol. 41, NASA Goddard Space Flight Center, Greenbelt, Maryland, 35 pp.
  • [43] Yilmaz, A., Baştürk, Ö., Saydam, A. C., Ediger, D., Yilmaz, K., Hatipoğlu, E., 1992. Eutrophication in lṡ kenderun Bay, Northeastern Mediterranean (Science for the Total Environment). In: Vollenweider, R. A., Marchetti, R., Viviani, R. (Eds.), Marine Coastal Eutrophication. Elsevier, Amsterdam, 705—717, http://dx.doi.org/10.1016/B978-0-444-89990-3.50062-6.
  • [44] Zhang, Y., Hu, C., Yu, T., 2015. Photodegradation of chromophoric dissolved organic matters in the water of Lake Dianchi, China. Front. Environ. Sci. Eng. 9 (4), 575—582, http://dx.doi.org/10.1007/s11783-014-0664-y.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-306952b0-77a8-4737-8c39-7d4e040be933
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.