PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Light absorption by phytoplankton in the southern Baltic and Pomeranian lakes: mathematical expressions for remote sensing applications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The absorption properties of phytoplankton in surface waters of the Baltic Sea and coastal lakes are examined in the context of their relationships with the concentration of the main photosynthetic pigment, chlorophyll a. The analysis covers 425 sets of spectra of light absorption coefficients aph (λ) and chlorophyll a concentrations Chla measured in 2006–2009 in various waters of the Baltic Sea (open and coastal waters, the Gulf of Gdańsk and the Pomeranian Bay, river mouths and the Szczecin Lagoon), as well as in three lakes in Pomerania, Poland (Obłęskie, Łebsko and Chotkowskie). In these waters the specific (i.e. normalized with respect to Chla) light absorption coefficient of phytoplankton aph*(λ) varies over wide ranges, which differ according to wavelength. For example, aph*(440) takes values from 0.014 to 0.124 mg−1 m2, but aph*(675) from 0.008 to 0.067 mg−1 m2, whereby Chla ranges from 0.8 to 120 mg m−3. From this analysis a mathematical description has been produced of the specific light absorption coefficient of phytoplankton aph*(λ), based on which the dynamics of its variability in these waters and the absorption spectra in the 400–700 nm interval can be reconstructed with a low level of uncertainty (arithmetic statistical error: 4.09–10.21%, systematic error: 29.63–51.37%). The relationships derived here are applicable in local remote sensing algorithms used for monitoring the Baltic Sea and coastal lakes and can substantially improve the accuracy of the remotely determined optical and biogeochemical characteristics of these waters.
Czasopismo
Rocznik
Strony
195--212
Opis fizyczny
Bibliogr. 63 poz., mapy, tab., wykr.
Twórcy
autor
  • Institute of Oceanology of the Polish Academy of Sciences, Sopot, Poland
autor
  • Institute of Oceanology of the Polish Academy of Sciences, Sopot, Poland
autor
  • Institute of Physics, Pomeranian University, Słupsk, Poland
autor
  • Institute of Oceanology of the Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • [1] Antoine, D., Morel, A., 1996. Oceanic primary production: 1. Adaptation of spectral light-photosynthesis model in view of application to satellite chlorophyll observations. Global Biogeochem. Cy. 10 (1), 43-55.
  • [2] Antoine, D., Andre, J.-M., Morel, A., 1996. Oceanic primary production: 2. Estimation at global scale satellite (coastal zone color scanner) chlorophyll. Global Biogeochem. Cy. 10 (1), 57-69.
  • [3] Babin, M., Stramski, D., Ferrari, G. M., Claustre, H., Bricaud, A., Obolensky, G., Hoepffner, N., 2003. Variations in the light absorption coefficient of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res. 108 (C8) 3211, 20 pp., http://dx.doi.org/10.1029/2001JC000882.
  • [4] Bidigare, R., Ondrusek, M. E., Morrow, J. H., Kiefer, D. A., 1990. 'In vivo' absorption properties of algal pigments, Ocean Optics 10. Proc. SPIE 1302, 290-302, http://dx.doi.org/10.1117/12.21451.
  • [5] Bricaud, A., Babin, M., Morel, A., Claustre, H., 1995. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization. J. Geophys. Res. 100 (C7), 13321-13332, http://dx.doi.org/10.1029/95JC00463.
  • [6] Bricaud, A., Claustre, H., Ras, J., Oubelkheir, K., 2004. Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations. J. Geophys. Res. 109 (C11), 12 pp., http://dx.doi.org/10.1029/2004JC002419.
  • [7] Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models. J. Geophys. Res. 103 (C13), 31033-31044, http://dx.doi.org/10.1029/98JC02712.
  • [8] Carlson, R. E., 1977. A trophic state index for lakes. Limnol. Oceanogr. 22 (2), 361-369, http://dx.doi.org/10.4319/lo.1977.22.2.0361.
  • [9] Chlost, I., Cieśliński, R., 2005. Change of level of waters in Lake Łebsko. Limnol. Rev. 5, 17-26.
  • [10] Choiński, A., 2007. Physical Limnology of Poland. Wyd. Nauk., UAM, Poznań, 547 pp. (in Polish).
  • [11] Darecki, M., Ficek, D., Krężel, A., Ostrowska, M., Majchrowski, R., Wozniak, S. B., Bradtke, K., Dera, J., Woźniak, B., 2008. Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation. Oceanologia 50 (4), 509-538.
  • [12] Darecki, M., Stramski, D., 2004. An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sens. Environ. 89 (3), 326-350, http://dx.doi.org/10.1016/j.rse.2003.10.012.
  • [13] Darecki, M., Weeks, A., Sagan, S., Kowalczuk, P., Kaczmarek, S., 2003. Optical characteristics of two contrasting Case 2 waters and their influence on remote sensing algorithms. Cont. Shelf Res. 23 (3-4), 237-250, http://dx.doi.org/10.1016/S0278-4343(02)00222-4.
  • [14] Dmitriev, E., Khomenko, G., Chami, M., Sokolov, A., Churilova, T., Korotaev, K., 2009. Parameterization of light absorption by components of seawater in optically complex coastal waters of the Crimea Peninsula (Black Sea). Appl. Optics 48 (7), 1249-1261, http://dx.doi.org/10.1364/AO.48.001249.
  • [15] Ficek, D., 2013. Bio-optical Properties of Lakes in Pomerania and their Comparison with the Properties of Other Lakes and Baltic Sea Waters, Dissert. Monogr. 23/2013. IO PAN, Sopot, 351 pp. (in Polish).
  • [16] Ficek, D., Meler, J., Zapadka, T., Stoń-Egiert, J., 2012a. Modelling the light absorption coefficients of phytoplankton in Pomeranian lakes (Northern Poland). Fund. Appl. Hydrophys. 5 (4), 54-63.
  • [17] Ficek, D., Meler, J., Zapadka, T., Woźniak, B., Dera, J., 2012b. Inherent optical properties and remote sensing reflectance of Pomeranian lakes (Poland). Oceanologia 54 (4), 611-630, http://dx.doi.org/10.5697/oc.54-4.611.
  • [18] Jeffrey, S. W., Vesk, M., 1997. Introduction to marine phytoplankton and their pigment signatures. In: Jeffrey, S. W., Mantoura, R. F. C., Wright, S. W. (Eds.), Phytoplankton Pigments in Oceanography. SCOR-UNECSO, Paris, 37-84.
  • [19] Kowalczuk, P., 1999. Seasonal variability of yellow substances absorption in the surface layer of the Balic Sea. J. Geophys. Res. 104 (C12), 30047-30058, http://dx.doi.org/10.1029/1999JC900198.
  • [20] Kowalczuk, P., Sagan, S., Olszewski, J., Darecki, M., Hapter, R., 1999. Seasonal changes in selected optical parameters in the Pomeranian Bay in 1996-1997. Oceanologia 41 (3), 309-334.
  • [21] Kowalczuk, P., Olszewski, J., Darecki, M., Kaczmarek, S., 2005. Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters. Int. J. Rem. Sens. 26 (2), 345-370, http://dx.doi.org/10.1080/01431160410001720270.
  • [22] Kratzer, C. R., Brezonik, P. L., 1981. A Carlson-type trophic state index for nitrogen in Florida Lakes. Water Res. Bull. 17 (4), 713-715, http://dx.doi.org/10.1111/j.1752-1688.1981.tb01282.x.
  • [23] Kutser, T., 1997. Estimation of Water Quality in Turbid Inland and Coastal Waters by Passive Optical Remote Sensing. Diss. Geophys. Univ. Tartuensis 8, 160 pp.
  • [24] Kutser, T., 2004. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol. Oceanogr. 49 (6), 2179-2189, http://dx.doi.org/10.4319/lo.2004.49.6.2179.
  • [25] Kutser, T., Herlevi, A., Kallio, K., Arst, H., 2001. A hyperspectral model for interpretation of passive optical remote sensing data from turbid lakes. Sci. Total Environ. 268 (1-3), 47-58, http://dx.doi.org/10.1016/S0048-9697(00)00682-3.
  • [26] Le, Ch., Li, Y., Zha, Y., Sun, D., 2009. Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China. Hydrobiologia 619 (1), 27-37, http://dx.doi.org/10.1007/s10750-008-9579-6.
  • [27] Lee, Z., Carder, K. L., Arnone, R. A., 2002. Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Appl. Optics 41 (27), 5755-5772, http://dx.doi.org/10.1364/AO.41.005755.
  • [28] Ligi, M., Kutser, T., Kallio, K., Attila, J., Koponen, S., Paavel, B., Soomets, T., Reinart, A., 2017. Testing the performance of empirical remote sensing algorithms in the Baltic Sea waters with modelled and in situ reflectance data. Oceanologia 59 (1), 57-68, http://dx.doi.org/10.1016/j.oceano.2016.08.002.
  • [29] Majchrowski, R., 2001. The Influence of Lighting on the Characteristics of Light Absorption by Phytoplankton in the Sea. Study and Dissertations 1/2001, Pomeranian Univ., Słupsk, (in Polish).
  • [30] Marker, A. F. H., Nusch, E. A., Rai, H., Riemann, B., 1980. The measurement of photosynthetic pigments in freshwaters and standardization of methods: conclusions and recommendations. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14, 91-106.
  • [31] Meler, J., Ostrowska, M., Stoń-Egiert, J., 2016a. Seasonal and spatial variability of phytoplankton and non-algal absorption in the surface layer of the Baltic. Estuar. Coast. Shelf Sci. 180, 123-135, http://dx.doi.org/10.1016/j.ecss.2016.06.012.
  • [32] Meler, J., Ostrowska, M., Stoń-Egiert, J., Zabłocka, M., Zdun, A., 2017. Seasonal and spatial variability of light absorption by suspended particles in the southern Baltic: a mathematical description. J. Mar. Syst. 170, http://dx.doi.org/10.1016/j.jmarsys.2016.10.011 (in press).
  • [33] Meler, J., Kowalczuk, P., Ostrowska, M., Ficek, D., Zabłocka, M., Zdun, A., 2016b. Parameterization of the light absorption properties of chromophoric dissolved organic matter in the Baltic Sea and Pomeranian Lakes. Ocean Sci. 12 (14), 1013-1032, http://dx.doi.org/10.5194/os-12-1013-2016.
  • [34] Mitchell, B. G., 1990. Algorithm for determining the absorption coefficient of aquatic particulates using the quantitative filter technique, Ocean Optics 10. Proc. SPIE 1302, 137-148, http://dx.doi.org/10.1117/12.21440.
  • [35] Morel, A., Bricaud, A., 1981. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Res. 28 (11), 1375-1393, http://dx.doi.org/10.1016/0198-0149(81)90039-X.
  • [36] Naguit, M. R. A., Tisera, W. L., 2009. Pigment analysis on Eucheuma denticulatum (Collins & Hervey) and Kappaphycus alvarezii (Doty) Cultivars cultured at different depths. The Threshold 4 (1) Art. No 3.
  • [37] Paavel, B., Kangro, K., Arst, H., Reinart, A., Kutser, T., Noges, T., 2016. Parameterization of chlorophyll-specific phytoplankton absorption coefficients for productive lake waters. J. Limnol. 75 (3), 423-438, http://dx.doi.org/10.4081/jlimnol.2016.1426.
  • [38] Reinart, A., Paavel, B., Pierson, D., Strömbeck, N., 2004. Inherent and apparent optical properties of Lake Peipsi, Estonia. Boreal Environ. Res. 9 (5), 429-445.
  • [39] Riha, S., Krawczyk, H., 2013. Remote sensing of cyanobacteria and green algae in the Baltic Sea. In: ASPRS 2013 Annual Conference, Baltimore, Maryland.
  • [40] Sartory, D. P., Grobbelaar, J. U., 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114 (3), 177-187, http://dx.doi.org/10.1007/BF00031869.
  • [41] Seppälä, J., 2003. Spectral absorption and fluorescence characteristics of the Baltic Sea phytoplankton. ICES CM 50:01, PDF, 5 pp.
  • [42] Sobiechowska-Sasim, M., Stoń-Egiert, J., Kosakowska, A., 2014. Quantitative analysis of extracted phycobilin pigments in cyanobacteria - an assessment of spectrophotometric and spectrofluorometric methods. J. Appl. Phycol. 26 (5), 2065-2074, http://dx.doi.org/10.1007/s10811-014-0244-3.
  • [43] Stæhr, P. A., Markager, S., 2004. Parameterization of the chlorophyll a-specific in vivo light absorption coefficient covering estuarine, coastal and oceanic waters. Int. J. Remote Sens. 25 (22), 5117-5130.
  • [44] Stramska, M., Stramski, D., Hapter, R., Kaczmarek, S., Stoń, J., 2003. Bio-optical relationships and ocean color algorithms for the north polar region of the Atlantic. J. Geophys. Res. 108 (C5), 3143, 16 pp., http://dx.doi.org/10.1029/2001JC001195.
  • [45] Stramska, M., Stramski, D., Kaczmarek, S., Allison, D. B., Schwarz, J., 2006. Seasonal and regional differentiation of bio-optical properties within the north polar Atlantic. J. Geophys. Res. 111 (C8), C08003, http://dx.doi.org/10.1029/2005JC003293.
  • [46] Strömbeck, N., 2001. Water Quality and Optical Properties of Swedish Lakes and Coastal Waters in Relation to Remote Sensing. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations (Faculty of Science and Technology) 633, 27 pp.
  • [47] Tassan, S., Ferrari, G. M., 1995. An alternative approach to absorption measurements of aquatic particles retained on filters. Limnol. Oceanogr. 40 (8), 1358-1368.
  • [48] Tassan, S., Ferrari, G. M., 2002. A sensitivity analysis of the “Transmittance - Reflectance” method for measuring light absorption by aquatic particles. J. Plankton Res. 24 (8), 757-774, http://dx.doi.org/10.1093/plankt/24.8.757.
  • [49] Vaičiūtė, D., 2012. Distribution Patterns of Optically Active Components and Phytoplankton in the Estuarine Plume in the South Eastern Baltic Sea. (PhD thesis). Klaipeda Univ., 126 pp.
  • [50] Vollenweider, R. A., Kerekes, J., 1982. Eutrophication of Waters. Monitoring, Assessment and Control. Organization for Economic Co-Operation and Development (OECD), Paris, 156 pp.
  • [51] Wintermans, J. F. G. M., DeMots, A., 1965. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim. Biophys. Acta 109 (2), 448-453, http://dx.doi.org/10.1016/0926-6585(65)90170-6.
  • [52] Woźniak, B., Dera, J., 2007. Light Absorption in Sea Water. Springer, New York, 452 pp.
  • [53] Woźniak, B., Dera, J., Koblentz-Mishke, O. I., 1992a. Bio-optical relationships for estimating primary production in the Ocean. Oceanologia 33, 5-38.
  • [54] Woźniak, B., Dera, J., Koblentz-Mishke, O. I., 1992b. Modelling the relationship between primary production, optical properties, and nutrients in the sea, Ocean Optics 11. Proc. SPIE 1750, 246-275, http://dx.doi.org/10.1117/12.140655.
  • [55] Woźniak, B., Krężel, A., Dera, J., 2004. Development of a satellite method for Baltic ecosystem monitoring (DESAMBEM) - an ongoing project in Poland. Oceanologia 46 (3), 445-455.
  • [56] Woźniak, B., Dera, J., Ficek, D., Majchrowski, R., Ostrowska, M., Kaczmarek, S., 2003. Modelling light and photosynthesis in the marine environment. Oceanologia 45 (2), 171-245.
  • [57] Woźniak, B., Dera, J., Ficek, D., Majchrowski, R., Kaczmarek, S., Ostrowska, M., Koblentz-Mishke, O. I., 1999. Modelling the influence of acclimation on the absorption properties of marine phytoplankton. Oceanologia 41 (2), 187-210.
  • [58] Woźniak, B., Dera, J., Ficek, D., Majchrowski, R., Kaczmarek, S., Ostrowska, M., Koblentz-Mishke, O. I., 2000. Model of the 'in vivo' spectral absorption of algal pigments. Part 1. Mathematical apparatus. Oceanologia 42 (2), 177-190.
  • [59] Woźniak, S. B., 2014. Simple statistical formulas for estimating biogeochemical properties of suspended particulate matter in the southern Baltic Sea potentially useful for optical remote sensing applications. Oceanologia 56 (1), 7-39, http://dx.doi.org/10.5697/oc.56-1.007.
  • [60] Woźniak, S. B., Meler, J., Lednicka, B., Zdun, A., Stoń-Egiert, J., 2011. Inherent optical properties of suspended particulate matter in the southern Baltic Sea. Oceanologia 53 (3), 691-729, http://dx.doi.org/10.5697/oc.53-3.691.
  • [61] Ylöstalo, P., Kallio, K., Seppälä, J., 2014. Absorption properties of inwater constituents and their variation among various lake types in the boreal region. Remote Sens. Environ. 148, 190-205, http://dx.doi.org/10.1016/j.rse.2014.03.023.
  • [62] Yoshimura, K., Zaitsu, N., Sekimura, Y., Matsushita, B., Fukushima, T., Imai, A., 2012. Parameterization of chlorophyll a – specific absorption coefficients and effects of their variation in highly eutrophic lake: a case study at Lake Kasumigaura, Japan. Hydrobiologia 691 (1), 157-169, http://dx.doi.org/10.1007/s10750-012-1066-4.
  • [63] Zhao, K., Porra, R. J., Scheer, H., 2011. Phycobiliproteins. In: Roy, S., Llewellyn, C. A., Egeland, E. S., Johnsen, G. (Eds.), Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography. Cambridge Univ. Press, 375-411, http://dx.doi.org/10.1017/CBO9780511732263.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30688540-e67b-456e-a7e5-de805d091198
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.