Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, Fe-40wt% TiB2 nanocomposite powders were fabricated by two different methods: (1) conventional powder metallurgical process by simple high-energy ball-milling of Fe and TiB2 elemental powders (ex-situ method) and (2) high-energy ball-milling of the powder mixture of (FeB+TiH2 ) followed by reaction synthesis at high temperature (in-situ method). The ex-situ powder was prepared by planetary ball-milling at 700 rpm for 2 h under an Ar-gas atmosphere. The in-situ powder was prepared under the same milling condition and heat-treated at 900°C for 2 h under flowing argon gas in a tube furnace to form TiB2 particulates through a reaction between FeB and Ti. Both Fe-TiB2 composite powder compacts were sintered by a spark-plasma sintering (SPS) process. Sintering was performed at 1150°C for the ex-situ powder compact and at 1080°C for the in-situ powder for 10 minutes under 50 MPa of sintering pressure and 0.1 Pa vacuum for both processes. The heating rate was 50°/min to reach the sintering temperature. Results from analysis of shrinkage and microstructural observation showed that the in-situ composite powder compacts had a homogeneous and fine microstructure compared to the ex-situ preparation, even though the sintered densities were almost the same (99.6 and 99.8% relative density, respectively).
Wydawca
Czasopismo
Rocznik
Tom
Strony
1023--1028
Opis fizyczny
Bibliogr. 16 poz., fot., rys.
Twórcy
autor
- University of Ulsan, School of Materials Science and Engineering, 55 Bon-gil 12, Technosaneop-ro, Nam-gu, Ulsan 44776, Korea
autor
- Industrial University of Ho Chi Minh City, Faculty of Mechanical Technology, Ho Chi Minh City, Vietnam
autor
- University of Ulsan, School of Materials Science and Engineering, 55 Bon-gil 12, Technosaneop-ro, Nam-gu, Ulsan 44776, Korea
Bibliografia
- [1] B. Du, Z. Zou, X. Wang, S. Qu, Appl. Surf. Sci. 254, 6489-6494 (2008).
- [2] B. Du, Z. Zou, X. Wang, S. Qu, Mat. Lett. 62, 689-691 (2008).
- [3] M. Darabara, G. D. Papadimitriou, L. Bourithis, Surf. Coat. Technol. 201, 3518-3523 (2006).
- [4] W. Xibao, W. Xiaofeng, S. Zhongquan, Surf. Coat. Technol. 192, 257-262 (2005).
- [5] A. Anal, T. K. Bandyopadhyay, K. Das, J. Mater. Process. Technol. 172, 70-76 (2006).
- [6] B. Li, Y. Liu, H. Cao, L. He, J. Li, J. Mater. Sci. 44, 3909-3912 (2009).
- [7] O. K. Lepakova, L. G. Raskolenko, Y. M. Maksimov, Combust., Explos. Shock Waves 36, 575-581 (2000).
- [8] C. C. Degnan, P. H. Shipway, Metall. Mater. Trans. A 33, 2973-2983 (2002).
- [9] L. Gai, M. Ziemnicka-Sylwester, Int. J. Refract. Met. Hard Mater. 45, 141-146 (2014).
- [10 ] O. K. Lepakova, L. G. Raskolenko, Y. M. Maksimov, J. Mater. Sci. 39, 3723-3732 (2004).
- [11] R. M. Aikin, JOM 49, 35-39 (1997).
- [12] X. K. Huynh, S. W. Bae, J. S. Kim, Korean J. Met. Mater. 55, 10-15 (2017).
- [13] X. K. Huynh, S. W. Bae, J. S. Kim, Arch. Metall. Mater. 62, 1393-1398 (2017).
- [14] X. K. Huynh, J. S. Kim, J. Korean Powder Metall. Inst. 23, 282-286 (2016).
- [15] X. K. Huynh, B. W. Kim, J. S. Kim, Arch. Metall. Mater. 63, 1043-1047 (2018).
- [16] H. R. Cho, J. S. Kim, K. H. Chung, Tribology International 131, 83-93 (2019).
Uwagi
EN
1. This work was supported by the 2018 Research Fund of University of Ulsan.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3066e859-0ccb-4685-911d-d29bc48b3c65