PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the shear behaviour of steel-concrete composite beams after elevated temperature and water cooling

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study of the mechanical behaviour of steel-concrete composite beams under fire is of great importance. However, little attention has been paid to the effect of elevated temperatures on the shear performance of composite beams. This study innovatively investigates the shear behaviour of steel-normal concrete (NC) composite beams and steel-engineered cementitious composite (ECC) composite beams after elevated temperatures and water cooling. The experimental results show that the degradation of the mechanical properties of concrete was more severe than steel after experiencing 200 ℃ and 400 ℃. This deteriorates the synergistic working properties of the concrete slab and steel beam, and the shear strength of steel beam was not fully utilised. PVA fibres have completely melted under 400 ℃, and the shear performance of steel-ECC composite beam, particularly the ductility and energy absorption, was found to be significantly reduced. The reductions in the shear capacity, ductility, energy absorption, and initial stiffness after 400 ℃ were 12.6%, 23.8%, 31.3%, and 10.2% for the steel-NC composite beam respectively, and 25.7%, 52.8%, 64.3%, and 30.2% for the steel-ECC composite beam respectively. Furthermore, the prediction equation for the residual shear capacity of the composite beams after elevated temperatures and water cooling was established and validated.
Rocznik
Strony
art. no. e126, 2024
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
  • School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
autor
  • School of Highway, Chang’an University, Xi’an 710064, China
  • School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
  • Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China
  • Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China
autor
  • School of Highway, Chang’an University, Xi’an 710064, China
Bibliografia
  • 1. Wan ZY, et al. Structural performance of steel-concrete composite beams with UHPC overlays under hogging moment. Eng Struct. 2022;270:114866. https://doi.org/10.1016/j.engstruct.2022.114866.
  • 2. Shao XD, et al. Design and experimental study of hot rolled shape steel-ultra high performance concrete composite beam. Eng Struct. 2022;252:113612. https://doi.org/10.1016/j.engstruct.2021.113612.
  • 3. Wu FW, et al. Experimental study on the mechanical properties of perfobond rib shear connectors with steel fiber high strength concrete. Materials. 2021;14:3345. https://doi.org/10.3390/ma14123345.
  • 4. Qiu MH, et al. Field validation of UHPC layer in negative moment region of steel-concrete composite continuous girder bridge. Front Struct Civ Eng. 2022;16:744-61. https://doi.org/10.1007/s11709-022-0843-z.
  • 5. Yang YL, et al. Flexural behavior of web embedded steel-concrete composite beam. Eng Struct. 2021;240:112345. https://doi.org/10.1016/j.engstruct.2021.112345.
  • 6. Vasdravellis G, et al. Shear strength and moment-shear interaction in steel-concrete composite beams. J Struct Eng. 2014;140(11):04014084. https://doi.org/10.1061/(ASCE)ST.1943-541X.00010 08.
  • 7. Liu S, et al. Residual shear behaviour of steel-concrete composite girders after fire exposure: experimental and numerical study. Thin Wall Struct. 2023;192:111164. https://doi.org/10.1016/j.tws.2023.111164.
  • 8. Ismail MK, et al. Structural performance of large-scale concrete beams reinforced with cementitious composite containing different fibers. Structures. 2021;31:1207-15. https://doi.org/10.1016/j.istruc.2021.02.028.
  • 9. Fan JS, et al. Experimental and analytical research on the flexural behaviour of steel-ECC composite beams under negative bending moments. Eng Struct. 2020;210:110309. https://doi.org/10.1016/j.engstruct.2020.110309.
  • 10. Wu FW, et al. Behaviour of steel-BFRP bars reinforced ECC composite girders with corrugated webs under negative moment. Structures. 2023;50:636-50. https://doi.org/10.1016/j.istruc.2023.02.071.
  • 11. Liu XZ, et al. Inspection, materials testing and field testing of a prestressed concrete box bridge after fire exposure. Fire Safety J. 2019;108:102852. https://doi.org/10.1016/j.firesaf.2019.102852.
  • 12. Babalola OE, et al. A review of residual strength properties of normal and high strength concrete exposed to elevated temperatures: impact of materials modification on behaviour of concrete composite. Constr Build Mater. 2021;296:123448. https://doi.org/10.1016/j.conbuildmat.2021.123448.
  • 13. Wang Q, et al. Carbon fiber to improve the resistance of high strength PVA-ECC to elevated temperatures. J Build Eng. 2023;71:106475. https://doi.org/10.1016/j.jobe.2023.106475.
  • 14. Shi G, et al. Experimental investigation into mechanical properties of Q345 steel after fire. J Constr Steel Res. 2022;199:107582. https://doi.org/10.1016/j.jcsr.2022.107582.
  • 15. Song CJ, et al. Fire response of horizontally curved continuous composite bridge girders. J Constr Steel Res. 2021;182:106671. https://doi.org/10.1016/j.jcsr.2021.106671.
  • 16. Hao CW, et al. Mechanical properties of full-scale prestressed concrete beams with thin slab after exposure to actual fire. Adv Mater Sci Eng. 2021;2021:2211413. https://doi.org/10.1155/2021/2211413.
  • 17. Liu C, et al. Residual flexural behaviour comparison between composite and monolithic beams after fire exposure. J Build Eng. 2023;64:105584. https://doi.org/10.1016/j.jobe.2022.105584.
  • 18. Song CJ, et al. Experimental and numerical study on failure mechanism of steel-concrete composite bridge girders under fuel fire exposure. Eng Struct. 2021;247:113230. https://doi.org/10.1016/j.engstruct.2021.113230.
  • 19. Wu MZ, et al. Experimental and numerical research on fire resistance of stainless steel-concrete composite beam. J Constr Steel Res. 2022;194:107342. https://doi.org/10.1016/j.jcsr.2022.107342.
  • 20. Zhou HT, et al. Examining fire response of unilaterally concrete-reinforced web prestressed composite beams with corrugated webs. Eng Struct. 2023;274:115194. https://doi.org/10.1016/j.engstruct.2022.115194.
  • 21. Solomon AA, et al. Impact of heating cooling regime on flexural behaviour of self-compacting concrete beams exposed to elevated temperatures. Mater Today Proc. 2022;60:466-74. https://doi.org/10.1016/j.matpr.2022.01.321.
  • 22. BS En 1994-1-1: 2004. Eurocode 4: design of composite steel and concrete structures. London: British Standards Institute; 2004. p. 2004.
  • 23. GB 50017-2017. Standard for design of steel structures. Beijing: China Architecture and Building Press; 2017. ((in Chinese)).
  • 24. AS/NZS 2327:2017. Composite structures-composite steel-concrete construction in building. Sydney: Standards Australia; 2017.
  • 25. GB/T 50081-2019. Standard for test methods of concrete physical and mechanical properties. Beijing: China Architecture and Building Press; 2019. ((in Chinese)).
  • 26. GB/T 17394.1-2014. Metallic materials-Leeb hardness test-Part 1: Test method. Beijing: China Standard Press; 2014. ((in Chinese)).
  • 27. ISO 834. Fire resistance tests-elements of building construction. Geneva: SISO; 1975.
  • 28. Zhao XD, et al. Experimental studies on shear behavior of steel-UHPC composite beam with hot rolled shape steel. Eng Struct. 2023;274:115160. https://doi.org/10.1016/j.engstruct.2022.115160.
  • 29. T/CECS 252-2019. Standard for appraisal of engineering structures after fire. Beijing: China Architecture and Building Press; 2019. ((in Chinese)).
  • 30. Chen JF, et al. Experimental investigation into mechanical properties of steel post high temperatures. J PLA Univ Sci Tech. 2010;11:328-33 ((in Chinese)).
  • 31. Lu J, et al. Experimental investigation into the post-fire mechanical properties of hot-rolled and cold-formed steels. J Constr Steel Res. 2016;121:291-310. https://doi.org/10.1016/j.jcsr.2016.03.005.
  • 32. Rong CX. Post-Fire Performance of Structural Steels. Tsinghua Univ. MA-thesis. 2018. (in Chinese)
  • 33. Zhang C, et al. Influence of artificial cooling methods on post-fire mechanical properties of Q355 structural steel. Constr Build Mater. 2020;252:119092. https://doi.org/10.1016/j.conbuildmat.2020.119092.
  • 34. Zhang C, et al. Mechanical properties of Q345 structural steel after artificial cooling from elevated temperatures. J Constr Steel Res. 2021;176:106432. https://doi.org/10.1016/j.jcsr.2020.106432.
  • 35. Bingol AF, et al. Effect of elevated temperatures and cooling regimes on normal strength concrete. Fire Mater. 2009;33:79-88. https://doi.org/10.1002/fam.987.
  • 36. Chen B, et al. Experimental study of mechanical properties of normal-strength concrete exposed to high temperatures at an early age. Fire Safety J. 2009;44:997-1002. https://doi.org/10.1016/j.firesaf.2009.06.007.
  • 37. Zhai Y, et al. Influences of cooling mode and high temperature on concrete compressive strength. J Hunan Univ. 2014;41:74-5 ((in Chinese)).
  • 38. Yang H, et al. Residual cube strength of coarse RCA concrete after exposure to elevated temperatures. Fire Mater. 2018;42:424-35. https://doi.org/10.1002/fam.2508.
  • 39. Wang YY, et al. Effect of elevated temperatures and cooling methods on strength of concrete made with coarse and fine recycled concrete aggregates. Constr Build Mater. 2019;210:540-7. https://doi.org/10.1016/j.conbuildmat.2019.03.215.
  • 40. Kara IB. Effects of cooling regimes on limestone rock and concrete with limestone aggregates at elevated temperatures. Int J Rock Mech Min. 2021;138:104618. https://doi.org/10.1016/j.ijrmms.2021.104618.
  • 41. Fehervari S. Effect of cooling methods on the residual properties of concrete exposed to elevated temperature. Results Eng. 2022;16:100797. https://doi.org/10.1016/j.rineng.2022.100797.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30553e44-5269-48d4-bcef-bf78792eada4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.