Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Spiking Neural Networks (SNNs) seems to be now the best way to model and simulate brain structures and functions. SNNs give also possibilities to better understanding of mechanism that are responsible for consciousness and abstract thinking. Furthermore they can also change our look on information processing and modern computing. Most common software implementations need great computing power and because of that they are not suitable for real time applications. Additionally, biological neurons process information in parallel which is impossible with simulation on conventional computer. Thus we present alternative way to implement models of SNNs incorporating FPGAs. In this paper we compared most common models that are used to implement SNNs in reconfigurable hardware and also we made review of recent works that were done in this subject.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
77--87
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Institute of Automatics, Mickiewicza Ave. 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Institute of Automatics, Mickiewicza Ave. 30, 30-059 Kraków, Poland
Bibliografia
- 1. Maass W., Bishop C.M. (2005): Pulsed Neural Networks, MIT Press.
- 2. Upegui A., Peña-Reyes C. A., Sanchez E. (2003): A methodology for evolving spiking neural-network topologies on line using partial dynamic reconfiguration, Prec. of International Conference on Computational Inteligence, Medellin Colombia.
- 3. Roggen, D., Hofmann, S., Thoma, Y., Floreano, D. (2003): Hardware spiking neural network with run-time reconfigurable connectivity in an autonomous robot, 2003 NASA/DoD Conference on Evolvable Hardware, 189 - 198
- 4. www.bluebrain.epfl.ch Last accessed: 19.05.2011
- 5. Ananthanarayanan R., Esser S. K., Simon H. D., Modha D. S. (2009): The cat is out of the bag: cortical simulations with neurons, synapses, Proc. of the Conference on High Performance Computing Networking, Storage and Analysis, 14-20.
- 6. Izhikevich E. M. (2004): Which Model to Use for Cortical Spiking Neurons ? IEEE Transactions on Neural Networks 15 1063-1070.
- 7. Izhikevich E. M. (2003): Simple Model of Spiking Neurons, IEEE Transactions on Neural Networks 14, 1569-1572.
- 8. Hodgkin A. L., Huxley A. F. (1954): A quantitative description of membrane current and application to conduction and excitation in nerve, J.Physiol. 117, 500–544.
- 9. Glackin B., McGinnity T.M., Maguire L.P., Wu Q.X., Belatreche A. (2005): Implementation of a biologically realistic spiking neuron model on FPGA hardware, Proc. of The 8th Joint Conference on Information Sciences vol.1-3 1412-1415.
- 10. Glackin B., McGinnity T.M., Maguire L.P., Wu Q.X., Belatreche A. (2005): A novel approach for the implementation of large scale spiking neural networks on FPGA hardware, Lecture Notes in Computer Science 3512/2005, 1-24.
- 11. Weinstein R.K., Reid M.S., Lee R.H. (2007): Methodology and design flow for assisted neural-model implementations in FPGAs, IEEE Transactions on Neural Systems and Rehabilitation Engineering vol. 15 83-93.
- 12. Glackin B., McGinnity T.M., Maguire L.P., Wu Q.X., Belatreche A. (2009): Emulating Spiking Neural Networks for edge detection on FPGA hardware, Proc. of Field Programmable Logic and Applications 2009, 670-673.
- 13. Rice K.L., Bhuiyan M.A., Taha T.M., Vutsinas C.N., Smith M.C. (2009): FPGA Implementation of Izhikevich Spiking Neural Networks for Character Recognition, Reconfigurable Computing and FPGAs International Conference, 451-456.
- 14. Guerrero-Rivera R., Pearce T. C. (2007): Attractor-based pattern classification in a spiking FPGA implementation of the olfactory bulb, 3rd International IEEE EMBS Conference on Neural Engineering, 593-599.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30545f9c-95cd-43b6-8199-6c141582c210