PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Enhancing command recognition in air traffic control through advanced classification techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper addresses the persistent challenges in speech processing within the Air Traffic Control (ATC) domain, a field where despite extensive research, issues such as handling noisy environments, accented speech, and the need for strict adherence to standard phraseology continue to undermine conventional language models. Our study employs a hybrid approach that integrates syntactic analysis with advanced machine learning classification algorithms - Logistic Regression, Lagrangian Support Vector Machine, and Naïve Bayes. By mixing and matching algorithms tailored for specific aspects of speech processing, our approach moves away from traditional reliance on a singular integrated system, illustrating through rigorous testing with the ATCOSIM dataset that such a multifaceted strategy markedly improves command recognition accuracy and adapts more effectively to the unique linguistic features of ATC speech. Results highlight the superior performance of Logistic Regression across various command recognition categories, pointing towards a promising direction for future advancements in ATC speech recognition technologies aimed at reducing human workload and increasing automation precision. This paper explores the complexities of the required analysis techniques and underscores the necessity of employing diverse algorithms in the processing pipeline to enhance overall system accuracy.
Rocznik
Strony
44--65
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Department of Computer Applications, National Institute of Technology, Tiruchirappalli, Tamil Nadu - 620 015, India
  • Department of Computer Applications, National Institute of Technology, Tiruchirappalli, Tamil Nadu - 620 015, India
Bibliografia
  • [1] Miller C. U.S. Programme for Development of Satellite Services for Air Traffic Control. J Navig. 1990;43(1):26-31. http://doi.org/10.1017/S0373463300013783
  • [2] Newbery RR. Integration of advanced displays, FMS, speech recognition and data link. J Navig. 1985;38(3):463-466. http://doi.org/10.1017/S037346330003287
  • [3] Ness M., Herbert M. A route planning and driver information system for PLEIADES. J Navig. 1994;47(2):159-164. http://doi.org/10.1017/S0373463300012078
  • [4] Helmke H., Klakow D., Motlicek P., Srinivasamurthy A., Szaszak G., Oualil Y. A context-aware speech recognition and understanding system for air traffic control domain. 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). http://doi.org/10.1109/ASRU.2017.8268964
  • [5] Chen S., Chong SR., Kopald H., Levonian Z., Wei Y. Read back error detection using automatic speech recognition. Twelfth USA/Europe Air Traffic Management Research and Development Seminar (ATM2017). http://doi.org/10.21437/Interspeech.2019-1962. Available from: http://atmseminar.org/seminarContent/seminar12/papers/12th_ATM_RD_Seminar_paper_20.pdf
  • [6] Cerna A., Ehr H., Kleinert M., Helmke H., Kern C., Klakow D., et al. Semi-supervised adaptation of assistant based speech recognition models for different approach areas. 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). http://doi.org/10.1109/DASC40568.2018. Available from: https://ieeexplore.ieee.org/document/8569879
  • [7] Lin Y. Spoken instruction understanding in air traffic control: challenge, technique, and application. Aerospace. 2021. http://doi.org/10.3390/aerospace8030065 Available from: https://www.mdpi.com/journal/aerospace.
  • [8] Helmke H., Klakow D., Schmidt A., Schulder M., Oualil Y. Real-time integration of dynamic context information for improving automatic speech recognition. INTERSPEECH 2015. Available from: https://isca-speech.org/archive/interspeech_2015/papers/i15_2107.pdf
  • [9] Holone H., Nguyen V. Possibilities, challenges, and the state of the art of automatic speech recognition in air traffic control. World Acad Sci Eng Technol Int J Comput Inf Eng. 2015;9(8). http://doi.org/10.5281/zenodo.1108428
  • [10] Bakr M. A linguistic approach to marine communication. J Navig. 1979;32(2):171-179. http://doi.org/10.1017/S0373463300037887
  • [11] Narayanan S., Balasundaram SR. Error detection using syntactic analysis for air traffic speech. Proceedings of the Second International Conference on Computing, Communications, and Cyber-Security. Lecture Notes in Networks and Systems, vol 203. 2021.
  • [12] Delpech E., Lancelot F., Farinas J., Pellegrini T. The Airbus air traffic control speech recognition 2018 challenge: towards ATC automatic transcription and call sign detection. InterSpeech 2019. http://doi.org/10.21437/Interspeech.2019-1962
  • [13] Lamere P., Kwok P., Gouvêa E., Raj B., Singh R., Walker W., Warmuth MK., Wolf P. The CMU SPHINX-4 speech recognition system. 2001.
  • [14] Hofbauer K., Petrik S., Hering H. The ATCOSIM corpus of non-prompted clean air traffic control speech. 2008. Available from: http://www.lrec-conf.org/lrec2008/
  • [15] Helmke H., Himawan I., Motlicek P., Oualil Y., Srinivasamurthy A., Szaszák G. Semi-supervised learning with semantic knowledge extraction for improved speech recognition in air traffic control. INTERSPEECH 2017. http://doi.org/10.21437/Interspeech.2017-1446
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30504c19-6a1f-4f33-9af6-fdfd1974a66d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.