PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nickel comb capacitors for real-time monitoring of cancer cell cultures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Kondensatory grzebieniowe z niklu do monitorowania hodowli komórek nowotworowych w czasie rzeczywistym
Języki publikacji
EN
Abstrakty
EN
The work is devoted to the technology of biocompatible substrates with nickel electrodes for in vitro impedance cell culture studies. The legitimacy of this subject was tested by conducting measurements using a system based on the Electric Cell-Substrate Impedance Sensor method. A device for cell bioimpedance testing, made in thin-film technology, has been described. Parameters and applications of the material used for construction, which is commonly used nickel, are discussed. The results of preliminary studies on melanoma cancer cells from the A375 cell line were presented, during which the already used measurement matrices were used. An analysis of the observed changes and obtained results was carried out.
PL
Praca poświęcona jest technologii biokompatybilnych podłoży z niklowymi elektrodami do badań impedancji hodowli komórek in vitro. Zasadność podjęcia tej tematyki przetestowano przeprowadzając pomiary przy użyciu systemu opartego na metodzie ECIS (ang. Electric CellSubstrate Impedance Sensor). Opisano przyrząd służący do badań bioimpedancji komórek, wykonany w technologii cienkowarstwowej. Omówiono parametry i zastosowania wykorzystanego do budowy urządzania materiału, którym jest powszechnie stosowany nikiel. Przedstawiono wyniki wstępnych badań nad komórkami nowotworowymi czerniaka z linii komórkowej A 375, do których użyto wykonane matryce pomiarowe. Dokonano analizy zaobserwowanych zmian i otrzymanych rezultatów.
Rocznik
Strony
149--152
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
  • Department of Electronics and Information Technology, Lublin University of Technology, 38A Nadbystrzycka St., 20-618 Lublin, Poland
  • Department of Electronics and Information Technology, Lublin University of Technology, 38A Nadbystrzycka St., 20-618 Lublin, Poland
Bibliografia
  • [1] Rana S.V.S., Metals and apoptosis: Recent developments, J. Trace Elem. Med. Biol., 22 (2008), No. 4, 262–284
  • [2] Das K.K., Das S.N., Dhundasi S.A., Nickel, its adverse health effects & oxidative stress, Indian J. Med. Res., 128 (2008), No. 4, 412–425
  • [3] Miller A.B., Review of Extant Community-Based Epidemiologic Studies on Health Effects of Hazardous Wastes, Toxicol. Ind. Health, 12 (1996), No. 2, 225–233
  • [4] Costa M. et al., The Role of Oxidative Stress in Nickel and Chromate Genotoxicity, in Oxygen/Nitrogen Radicals: Cell Injury and Disease, Boston, MA: Springer US, 2002, 265–275
  • [5] Song X., Fiati Kenston S.S., Kong L., Zhao J., Molecular mechanisms of nickel induced neurotoxicity and chemoprevention, Toxicology, 392 (2017), 47–54
  • [6] Xu S.-C. et al., Melatonin protects against Nickel-induced neurotoxicity in vitro by reducing oxidative stress and maintaining mitochondrial function, J. Pineal Res., 49 (2010), No. 1.
  • [7] Xu S.-C. et al., Nickel exposure induces oxidative damage to mitochondrial DNA in Neuro2a cells: the neuroprotective roles of melatonin, J. Pineal Res., 51 (2011), No. 4, 426–433
  • [8] Stannard L., Doak S.H., Doherty A., Jenkins G.J., Is Nickel Chloride really a Non-Genotoxic Carcinogen?, Basic Clin. Pharmacol. Toxicol., 121 (2017) 10–15
  • [9] Oller A.R., Costa M., Oberdörster G., Carcinogenicity Assessment of Selected Nickel Compounds,” Toxicol. Appl. Pharmacol., 143 (1997), No. 1, 152–166
  • [10] Wang S., Shi X., Molecular mechanisms of metal toxicity and carcinogenesis, Mol. Cell. Biochem., 222 (2001), No. 1/2, 3–9
  • [11] Stensaas S.S., Stensaas L.J., Histopathological evaluation of materials implanted in the cerebral cortex, Acta Neuropathol., 41 (1978), No. 2, 145–155
  • [12] Zhao J., Shi X., Castranova V., Ding M., Occupational Toxicology of Nickel and Nickel Compounds, J. Environ. Pathol. Toxicol. Oncol., 28 (2009), No. 3, 177–208
  • [13] Rehman K., Fatima F., Waheed I., Akash M.S.H., Prevalence of exposure of heavy metals and their impact on health consequences, J. Cell. Biochem., 119 (2018), No. 1, 157–184
  • [14] Wei B., Yang L., A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China, Microchemical Journal, 94 (2010), No. 2., 99–107
  • [15] Guilhermino L., Diamantino T., Carolina Silva M., Soares A.M.V., Acute toxicity test with Daphnia magna: An alternative to mammals in the prescreening of chemical toxicity?, Ecotoxicol. Environ. Saf., 46 (2000), No. 3, 357–362
  • [16] Fikirdeşici Ş., Altindag A., Özdemir E.G., Investigation of acute toxicity of cadmium-arsenic mixtures to Daphnia magna with toxic units approach, Turkish J. of Zoology 36 (2012), No. 4, 543–550
  • [17] Rozpondek K., Rozpondek R., Pachura P., Analiza toksyczności osadów dennych Zbiornika Poraj w aspekcie stopnia zanieczyszczenia metalami ciężkimi, Acta Sci. Pol. Form. Circumiectus, 16 (2017), No. 2, 33–43
  • [18] Yuan Y. et al., In vitro toxicity evaluation of heavy metals in urban air particulate matter on human lung epithelial cells, Sci. Total Environ., 678 (2019), 301–308
  • [19] Wu X., Cobbina S.J., Mao G., Xu H., Zhang Z., Yang L., A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment, Environ. Sci. Pollut. Res., 23 (2016), No. 9, 8244–8259
  • [20] Piontek M., Walczak B., Czyżewska W., Lechów H., Widok Miedź, kadm i cynk w pyle drogowym miast oraz określenie toksyczności związków tych metali metodą biologiczną, Kosmos, 3 (2012), No. 3, 409–415
  • [21] Goyer R., Issue paper on the human health effects of metals. Washington: U.S. Environmental Protection Agency, 2004
  • [22] Zhou Q. et al., Combined toxicity and underlying mechanisms of a mixture of eight heavy metals, Mol. Med. Rep., 15 (2017), No. 2, 859–866
  • [23] Kocadal K., Alkas F.B., Battal D., Saygi S., Cellular pathologies and genotoxic effects arising secondary to heavy metal exposure: A review, Human and Experimental Toxicology, 39 (2020), No. 1, 3–13
  • [24] Odobašić A., Šestan I., Begić S., Biosensors for Determination of Heavy Metals in Waters, Biosensors for Environmental Monitoring, IntechOpen, 2019
  • [25] Ramya D., Thatheyus A.J., Microscopic Investigations on the Biosorption of Heavy Metals by Bacterial Cells: A Review, Sci. Int., 6 (2018), No. 1, 11–17
  • [26] Applied BioPhysics, Product Guide, Corporate Headquarters. 185 Jordan Road • Troy, NY 12180 1-866-301-ECIS (3247)
  • [27] Judith K.M., Stolwijk A., Renken C.W., Trebak M., Impedance analysis of GPCR-mediated changes in endothelial barrier function: overview and fundamental considerations for stable and reproducible measurements, SpringerLink, 2018
  • [28] Prendecka M., Małecka-Massalska T., Effect of exopolysaccharide from Ganoderma applanatum on the electrical properties of mouse fibroblast cells line L929 culture using an electric cel-substrate impedance sensing (ECIS), Annals of Agricultural and Environmental Medicine 23 (2016), 293-297
  • [29] Tiruppathi C., Malik A.B., Del Vecchio P.J., Keese C.R., Giaever I., Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function., Proc. Natl. Acad. Sci., 89 (1992), No. 17, 7919–7923
  • [30] Wegener J., Keese C.R., Giaever I., Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces, Exp. Cell Res., 259 (2000), No. 1, 158–166
  • [31] Asami K., Characterization of biological cells by dielectric spectroscopy, J. Non. Cryst. Solids, 305 (2002), No. 1–3, 268–277
  • [32] Gawad S., Cheung K., Seger U., Bertsch A., Renaud P., Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations, Lab Chip, 4 (2004), No. 3, 241–251
  • [33] Morgan H., Sun T., Holmes D., Gawad S., Green N.G., Single cell dielectric spectroscopy, J. Phys. D. Appl. Phys., 40 (2007), No. 1, 61–70
  • [34] Sun T.,. Green N.G, Morgan H., Analytical and numeerical modeling methods for impedance analysis of single cells onchip, Nano, 03 (2008), No. 01, 55–63
  • [35] Kociubiński A., Zarzeczny D., Szypulski M., Kondensatory grzebieniowe z miedzi do monitorowania funkcji życiowych komórek hodowlanych, Przegląd elektrotechniczny, 1 (2018), No. 9, 61–63
  • [36] Kociubiński A. et al., “Real-time monitoring of cell cultures with nickel comb capacitors,” Inform. Autom. Pomiary w Gospod. I Ochr. Środowiska, 10 (2020), No. 2, 32–35.
  • [37] https://www.biophysics.com/teerBarrierFunction.php (Available 13.VII.2020)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-304dafce-dd83-4f53-ba2a-dac863a9304a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.