PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical modeling of ground surface topography in monocrystalline silicon grinding considering the ductile-regime effect

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Grinding process of monocrystalline silicon easily leads to fractured surfaces, therefore an analytical model of the ground silicon surface is presented. In the model, the ductile-regime effect is considered by determining grain-workpiece interaction mode (ductile and brittle modes) at each grinding moment. Validation experiments proved that the model can, to a large extent, describe realistic silicon grinding and predict the machined surfaces in terms of (i) brittle and ductile area, (ii) roughness and waviness, and (iii) potential chipping zone sizes. The model therefore is anticipated to be not only meaningful to guide and optimize the industrial silicon grinding process, but also transferable to other kinds of brittle materials.
Rocznik
Strony
880--893
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang post code: 110819, PR China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang post code: 110819, PR China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang post code: 110819, PR China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang post code: 110819, PR China
Bibliografia
  • [1] B. Ceccaroli, et al., Solar Silicon Processes: Technologies, Challenges, and Opportunities, CRC Press, 2016.
  • [2] Z.J. Pei, et al., Grinding of silicon wafers: a review from historical perspectives, International Journal of Machine Tools and Manufacture 48 (12) (2008) 1297–1307.
  • [3] H.N. Li, D. Axinte, On a stochastically grain-discretised model for 2D/3D temperature mapping prediction in grinding, International Journal of Machine Tools and Manufacture (2017).
  • [4] Z. Pei, A. Strasbaugh, Fine grinding of silicon wafers, International Journal of Machine Tools and Manufacture 41 (5) (2001) 659–672.
  • [5] H.N. Li, et al., Evaluation of grinding-induced subsurface damage in optical glass BK7, Journal of Materials Processing Technology 229 (2016) 785–794.
  • [6] T. Yu, et al., Experimental investigation on grinding characteristics of optical glass BK7: with special emphasis on the effects of machining parameters, The International Journal of Advanced Manufacturing Technology 82 (5–8) (2016) 1405–1419.
  • [7] R.F. King, D. Tabor, The strength properties and frictional behaviour of brittle solids, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 223 (1153) (1954) 225–238.
  • [8] I. Zarudi, et al., Amorphous structures induced in monocrystalline silicon by mechanical loading, Applied Physics Letters 85 (6) (2004) 932–934.
  • [9] X. Li, Y. Rong, Framework of grinding process modeling and simulation based on microscopic interaction analysis, Robotics and Computer-Integrated Manufacturing 27 (2) (2011) 471–478.
  • [10] P.N. Blake, R.O. Scattergood, Ductile-Regime Machining of Germanium and Silicon, Journal of the American Ceramic Society 73 (4) (1990) 949–957.
  • [11] S. Malkin, C. Guo, Grinding Technology: Theory and Application of Machining With Abrasives, McGraw-Hill, USA, 2008.
  • [12] Y. Liu, et al., Investigation of different grain shapes and dressing to predict surface roughness in grinding using kinematic simulations, Precision Engineering 37 (3) (2013) 758–764.
  • [13] H.N. Li, et al., Detailed modeling of cutting forces in grinding process considering variable stages of grain-workpiece micro interactions, International Journal of Mechanical Sciences (2016).
  • [14] M.J. Jackson, M.P. Hitchiner, High Performance Grinding and Advanced Cutting Tools, Springer, 2012.
  • [15] J. Aurich, B. Kirsch, Kinematic simulation of high-performance grinding for analysis of chip parameters of single grains, CIRP Journal of Manufacturing Science and Technology 5 (3) (2012) 164–174.
  • [16] D. Anderson, et al., Comparison of spherical and truncated cone geometries for single abrasive-grain cutting, Journal of Materials Processing Technology 212 (9) (2012) 1946–1953.
  • [17] T.G. Bifano, et al., Ductile-regime grinding: a new technology for machining brittle materials, Journal of Manufacturing Science and Engineering 113 (2) (1991) 184–189.
  • [18] S. Luo, K. Chen, An experimental study of flat fixed abrasive grinding of silicon wafers using resin-bonded diamond pellets, Journal of Materials Processing Technology 209 (2) (2009) 686–694.
  • [19] G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Advances in Applied Mechanics 7 (1962) 55–129.
  • [20] G. Werner, Influence of work material on grinding forces, Annals of the CIRP 27 (1) (1978) 243–248.
  • [21] T. Atkins, The Science and Engineering of Cutting: The Mechanics and Processes of Separating, Scratching and Puncturing Biomaterials, Metals and Non-metals, Elsevier Science, 2009.
  • [22] A.J. Shih, et al., Cost-effective grinding of zirconia using the dense vitreous bond silicon carbide wheel, Journal of Manufacturing Science and Engineering 125 (2) (2003) 297–303.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-304d52ec-e6e5-4d87-98c9-a6e3930f2ed1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.