PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modelling of the laser high-temperature hyperthermia using the dual-phase lag equation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, thermal processes occurring in a soft tissue subjected to laser irradiation are analyzed. The bioheat transfer in an axisymmetric domain is described by a dual-phase lag equation, which takes into account temperature-dependent thermophysical parameters of the tissue. The source term in this equation is related to laser irradiation, and is determined by solving the optical diffusion equation. It is assumed that the optical parameters depend on the Arrhenius integral, which is a measure of the degree of tissue destruction. In the model, the process of evaporation of water contained in the tissue is also considered.
Rocznik
Strony
389--401
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Silesian University of Technology, Department of Computational Mechanics and Engineering, Gliwice, Poland
  • Silesian University of Technology, Department of Computational Mechanics and Engineering, Gliwice, Poland
Bibliografia
  • 1. Abraham J., Sparrow E., 2007, A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure and necrosis-dependent perfusion, and moisture-dependent properties, International Journal of Heat and Mass Transfer, 50, 13-14, 2537-2544.
  • 2. Barnoon P., Bakhshandehfard F., 2021, Thermal management in a biological tissue in order to destroy tissue under local heating process, Case Studies in Thermal Engineering, 26, ID 101105.
  • 3. Dombrovsky L.A., Baillis D., 2010, Thermal Radiation in Disperse Systems: An Engineering Approach, Begell House, New York.
  • 4. Dombrovsky L.A., Timchenko V., Jackson M., 2012, Indirect heating strategy of laser induced hyperthermia: an advanced thermal model, International Journal of Heat and Mass Transfer, 55, 17-18, 4688-4700.
  • 5. Ellebrecht D.B., Theisen-Kunde D., Kuempers Ch., Keck T., Kleemann M., Wolken H., 2018, Analysis of laparoscopic laser liver resection in standardized porcine model, Surgical Endoscopy, 32, 4966-4972.
  • 6. Fasano A., Hömberg D., Naumov D., 2010, On a mathematical model for laser-induced thermotherapy, Applied Mathematical Modelling, 34, 12, 3831-3840.
  • 7. Foster J., Hodder S.G., Lloyd A.B., Havenith G., 2020, Individual responses to heat stress: implications for hyperthermia and physical work capacity, Frontiers in Physiology, 11, 28 pp.
  • 8. Giglio M.C., Logghe B., Garofalo E., Tomassini F., Vanlander A. et al., 2020, Laparoscopic versus open thermal ablation of colorectal liver metastases: a propensity score-based analysis of local control of the ablated tumors, Annals of Surgical Oncology, 27, 2370-2380.
  • 9. Jacques S.L., Pogue B.W., 2008, Tutorial on diffuse light transport, Journal of Biomedical Optics, 13, 4, 1-19.
  • 10. Jasiński M., Majchrzak E., Turchan Ł., 2016, Numerical analysis of the interactions between laser and soft tissues using generalized dual-phase lag model, Applied Mathematical Modeling, 40, 2, 750-762.
  • 11. Jaunich M., Raje S., Kim K., Mitra K., Guo Z., 2008, Bio-heat transfer analysis during short pulse laser irradiation of tissues, International Journal of Heat and Mass Transfer, 51, 5511-5521.
  • 12. Kim B.M., Jacques S.L., Rastegar S., Thomsen S., Motamedi M., 1996, Nonlinear finite element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue, IEEE Journal of Selected Topics in Quantum Electronics, 2, 4, 922-933.
  • 13. Kim K., Guo Z., 2007, Multi-time-scale heat transfer modeling of turbid tissues exposed to short-pulsed irradiations, Computer Methods and Programs in Biomedicine, 86, 112-123.
  • 14. Lopresto V., Argentieri A., Pinto R., Cavagnaro M., 2019, Temperature dependence of thermal properties of ex vivo liver tissue up to ablative temperatures, Physics in Medicine and Biology, 64, 10, 13 pp.
  • 15. Majchrzak E., Stryczyński M., 2022, Numerical analysis of biological tissue heating using the dual-phase lag equation with temperature-dependent parameters, Journal of Applied Mathematics and Computational Mechanics, 21, 3, 85-98.
  • 16. Majchrzak E., Turchan Ł., Jasiński M., 2019, Identification of laser intensity assuring the destruction of target region of biological tissue using the gradient method and generalized dual-phase lag equation, Iranian Journal of Science and Technology – Transactions of Mechanical Engineering, 43, 3, 539-548.
  • 17. Mochnacki B., Majchrzak E., 2007, Identification of macro and micro parameters in solidification model, Bulletin of the Polish Academy of Sciences, Technical Sciences, 55, 1, 107-113.
  • 18. Niemz M.H., 2007, Laser-Tissue Interaction: Fundamentals and Applications, Springer-Verlag, Berlin, Heidelberg, New York.
  • 19. Szasz A., Szasz N., Szasz O., 2011, Oncothermia: Principles and Practices, Springer.
  • 20. Tzou D.Y., 1995, A unified field approach for heat conduction from macro- to micro-scales, Journal of Heat Transfer, 117, 1, 8-16.
  • 21. Welch M. A.J., Gemert M.J.C. [Ed.], 1995, Optical-Thermal Response of Laser-Irradiated Tissue, Plenum Press, New York.
  • 22. Yang D., Converse M.C., Mahvi D.M., Webster J.G., 2007, Expanding the bioheat equation to include tissue internal water evaporation during heating, IEEE Transactions on Biomedical Engineering, 54, 8, 1382-1388.
  • 23. Zhou J., Zhang Y., Chen J. K., 2009, An axisymmetric dual-phase lag bio-heat model for laser heating of living tissues, International Journal of Thermal Sciences, 48, 8, 1477-1485.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-304d04e4-c2b3-4af1-87f7-1d898c92f07f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.