PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the type of ion-exchange resin on Mn2+ adsorption in the presence of competing cations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Present in soils, ground and surface waters, manganese is among the most common metals in Earth crust. It is also an essential trace element to the functioning of several enzymes in the human body. However, exposure to high manganese concentrations can also be harmful to humans with psychiatric and motor effects and therefore, manganese concentrations in drinking water and also industrial effluents are regulated. In the current work, the adsorption of Ca2+, Mg2+ and Mn2+ on three different ion-exchange resins: (i) aminophosphonic acid - chelating (Purolite S950), (ii) polyacrylic weak acid cation (Purolite C104E) and (iii) polystyrene strong acid cation (Purolite C100) was investigated. The results revealed that Purolite S950 had the highest Mn2+ uptake (37.9 mg/mL-resin or 0.69 mmol/mLresin) as compared to Ca2+ (3.2 mg/mL-resin or 0.08 mmol/mL-resin) and Mg2+ (~0 mg/mL-resin) and was selected for further kinetics and equilibrium studies. The results indicated Purolite S950 as particularly suited to be applied in the treatment of neutral mine waters with high Mg/Mn ratios. Additionally, Purolite S950 showed a small affinity for Ca2+ and therefore an efficient Mn2+ removal will depend on the Ca/Mn ratio of the mine water under treatment. According to the kinetic analysis, manganese sorption on Purolite S950 was described by the pseudo-second order model (r2 > 0.98) with an activation energy of 6.34 kJ/mol and thus pore-difussion was the rate controlling step of the process. In terms of equilibrium studies, manganese sorption on Purolite S950 followed the Langmuir model with maximum loadings of up to 41.5 mg/mL-resin. The thermodynamic modelling indicated an exothermic process (-85.0 kJ/mol, as standard enthalpy) with a standard entropy of -274 J/mol×K, which was ascribed to the release of two adsorbed H+ ions for each Mn2+ ion taken up from solution.
Rocznik
Strony
art. no. 187844
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
  • Universidade Federal de Ouro Preto, Graduate Program in Environmental Engineering, Campus Morro do Cruzeiro, s.n., Bauxita, Ouro Preto, MG, 35400-000, Brazil. rr
  • Universidade Federal de Ouro Preto, Hydrometallurgy Laboratory, Department of Metallurgical and Materials Engineering, Campus Morro do Cruzeiro, s.n., Bauxita, Ouro Preto, MG, 35400-000, Brazil
  • Universidade Federal de Ouro Preto, Hydrometallurgy Laboratory, Department of Metallurgical and Materials Engineering, Campus Morro do Cruzeiro, s.n., Bauxita, Ouro Preto, MG, 35400-000, Brazil
Bibliografia
  • ADIANSYAH, J. S.; ROSANO, M.; VINK, S.; KEIR, G. 2015. A framework for a sustainable approach to mine tailings management: disposal strategies. J. Clean. Prod., 108 1050-1062.
  • AMENGOL, B. P. C. Estudo cinético e termodinâmico da adsorção do manganês em resinas de troca iônica. 2021. 68 f. Dissertação de mestrado - Programa de Pós-Graduação em Engenharia Ambiental, Universidade Federal de Ouro Preto.
  • BARBOZA, N. R.; GUERRA-SÁ, R.; LEÃO, V. A. 2016. Mechanisms of manganese bioremediation by microbes: an overview. J Chem Technol Biot, 91 (11), 2733-2739.
  • CAMARGO, F. C. F.; SILVA, G. d. L. C.; DE LEUCAS, H. L. B.; DE VASCONCELOS, M. R. et al. 2019. Chemical and biological approach to remove Mn from aqueous solution. Environ. Technol. Innov.. 15 100398.
  • COŞKUN, G.; ŞIMŞEK, İ.; ARAR, Ö.; YÜKSEL, Ü. et al. 2016. Comparison of chelating ligands on manganese (II) removal from aqueous solution. Desalin Water Treat, 57 (53), 25739-25746. DOI: 10.1080/19443994.2016.1153984.
  • CRINI, G.; BADOT, P.-M. 2008. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci., 33 (4), 399-447.
  • DYER, A.; ENAMY, H. 1981. Mobility of magnesium ions in the synthetic zeolites A, X and 2.62-Y. Zeolites, 1 (1), 7-10.
  • DYER, A.; TOWNSEND, R. P. 1973. The mobility of cations in synthetic zeolites with the faujasite framework — V: The self-diffusion of zinc into X and Y zeolites. J Inorg Nucl Chem, 35 (8), 3001-3008.
  • EL-AASSAR, M. R.; MOHAMED, F. M. 2021. Characterization valorized anthracite and its application in manganese (VII) adsorption from aqueous solution; batch and column studies. Micropor Mesopor Mat, 310 110641.
  • EREN, E.; GUMUS, H.; SARIHAN, A. 2011. Synthesis, structural characterization and Pb(II) adsorption behavior of Kand H-birnessite samples. Desalination, 279 (1), 75-85.
  • FIGUEIREDO, R. S.; SAMIR S. LEAO; LEÃO, V. A. 2018. Cinética de adsorção de manganês em zeólitas exauridas. Tecnol Metal Mater Min, 15 (1), 8-14.
  • GEMICI, B. T.; OZEL, H. U.; OZEL, H. B. 2021. Removal of methylene blue onto forest wastes: Adsorption isotherms, kinetics and thermodynamic analysis. Environ. Technol. Innov. 22 101501.
  • HADADI, V. 2020. Synthesizing “sulfonated styrene-divinylbenzene polymer/Fe” nanocomposite for adsorption of Mn (II) and Zn (II) ions from the waste of alkaline battery recycling factories: kinetic, thermodynamic, and isotherm adsorption studies. Polymer, 100 266-273
  • HAMABE, Y.; HIRASHIMA, Y.; IZUMI, J.; YAMABE, K. et al. 2009. Properties of a bifunctional chelating resin containing aminomethylphosphonate and sulfonate derived from poly(ω-bromobutylstyrene-co-divinylbenzene) beads. React. Funct. Polym., 69 (11), 828-835.
  • HEIKKINEN, P. M.; RÄISÄNEN, M. L.; JOHNSON, R. H. 2009. Geochemical Characterisation of Seepage and Drainage Water Quality from Two Sulphide Mine Tailings Impoundments: Acid Mine Drainage versus Neutral Mine Drainage. Mine Water Environ., 28 (1), 30-49
  • INSTITUTO MINEIRO DE GESTÃO DAS ÁGUAS. Acompanhamento da qualidade das águas do rio doce após o rompimento da barragem da samarco no distrito de Bento Rodrigues – Mariana/MG. Belo Horizonte, p. 49. 2015.
  • INSTITUTO MINEIRO DE GESTÃO DAS ÁGUAS. Encarte especial sobre a qualidade das águas do rio doce após 5 anos do rompimento dambarragem de Fundão. Instituto Mineiro de Gestão das Águas. Belo Horizonte, p. 74. 2020.
  • KAPUR, M.; MONDAL, M. K. 2016. Design and model parameters estimation for fixed–bed column adsorption of Cu(II) and Ni(II) ions using magnetized saw dust. Desalin Water Treat, 57 (26), 12192-12203.
  • KARTHIKEYAN, T.; RAJGOPAL, S.; MIRANDA, L. R. 2005. Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J. Hazard. Mater., 124 (1–3), 192-199.
  • KIEFER, R.; HÖLL, W. H. 2001. Sorption of Heavy Metals onto Selective Ion-Exchange Resins with Aminophosphonate Functional Groups. Ind. Eng. Chem. Res., 40 (21), 4570-4576. DOI: 10.1021/ie010182l.
  • KLIPPER, R. M.; HOFFMANN, H.; MITSCHKER, A.; WAGNER, R. Ion Exchange for Industry. 1988. 243 p.
  • LEVENSPIEL, O. Chemical reaction engineering. 1 ed. New York: John Wiley & Sons, 1962. 578 p.
  • LIN, Z.; YUAN, P.; YUE, Y.; BAI, Z. et al. 2020. Selective adsorption of Co(II)/Mn(II) by zeolites from purified terephthalic acid wastewater containing dissolved aromatic organic compounds and metal ions. Sci Total Environ, 698 134287.
  • MARCU, C.; VARODI, C.; BALLA, A. 2021. Adsorption Kinetics of Chromium (VI) from Aqueous Solution Using an Anion Exchange Resin. Anal. Lett., 54 (1-2), 140-149.
  • MCCABE, W. L.; SMITH, J. C.; HARRIOTT, P. Unit operations of chemical engineering. 7 ed. New York: McGraw-Hill´s Science, 2005. Chemical Engineering Series.
  • MOHAN, M. S.; ABBOTT, E. H. 1978. Metal complexes of biologically occurring aminophosphonic acids. J. Coord. Chem., 8 (3), 175-182.
  • MORGAN, J. J. 2005. Kinetics of reaction between O2 and Mn(II) species in aqueous solutions. Geochim. Cosmochim. Acta, 69 (1), 35-48.
  • NAZARIAN, R.; DESCH, R. J.; THIEL, S. W. 2021. Kinetics and equilibrium adsorption of phosphate on lanthanum oxide supported on activated carbon. Colloids Surf. A., 624 126813.
  • NESTEREKO, P. N.; SHAW, M. J.; HILL, S. J.; JONES, P. 1999. Aminophosphonate-Functionalized Silica: A Versatile Chromatographic Stationary Phase for High-Performance Chelation Ion Chromatography. Microchem. J., 62 (1), 58-69.
  • OWEN, J. R.; KEMP, D.; LÈBRE, É.; SVOBODOVA, K. et al. 2020. Catastrophic tailings dam failures and disaster risk disclosure. Int. J. Disaster Risk Reduct., 42 101361.
  • PEREZ, I. D.; CORREA, M. M. J.; TENÓRIO, J. A. S.; ESPINOSA, D. C. R. Effect of the pH on the Recovery of Al3+, Co2+, Cr3+, Cu2+, Fe3+, Mg2+, Mn2+, Ni2+ and Zn2+ by Purolite S950. In: Energy Technology 2018, 2018, Springer International Publishing, p. 385-393.
  • RAJIC, N.; STOJAKOVIC, D.; JEVTIC, S.; ZABUKOVEC LOGAR, N. et al. 2009. Removal of aqueous manganese using the natural zeolitic tuff from the Vranjska Banja deposit in Serbia. J. Hazard. Mater., 172 (2), 1450-1457.
  • SAHA, P.; CHOWDHURY, S. Insight into adsorption thermodynamics. In: MIZUTANI, T. (Ed.). Thermodynamics, 2011. v. 16, p. 349-364.
  • SICUPIRA, D. C.; SILVA, T. T.; LEÃO, V. A.; MANSUR, M. B. 2014. Batch removal of manganese from acid mine drainage using bone char. Braz J Chem Eng, 31 195-204.
  • SRACEK, O.; FILIP, J.; MIHALJEVIČ, M.; KŘÍBEK, B. et al. 2011. Attenuation of dissolved metals in neutral mine drainage in the Zambian Copperbelt. Environmental Monitoring and Assessment, 172 (1), 287-299.
  • SUDDAI, A.; NUENGMATCHA, P.; CHANTHAI, S. 2017. Adsorptive removal of manganese (II) from aqueous solution using graphene oxide: A kinetics and thermodynamics study. Orient. J. Chem., 33 (4), 1899-1904.
  • TUCK, C. C. Iron ore. National Minerals Information Center, p. 2. 2020.
  • WU, Y.; LI, B.; FENG, S.; MI, X. et al. 2009. Adsorption of Cr(VI) and As(III) on coaly activated carbon in single and binary systems. Desalination, 249 (3), 1067-1073
  • ZHUANG, H.; ZHONG, Y.; YANG, L. 2020. Adsorption equilibrium and kinetics studies of divalent manganese from phosphoric acid solution by using cationic exchange resin. Chinese J Chem Eng, 28 (11), 2758-2770.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3049946b-152f-4379-9c7b-6789224077f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.