PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the effect of curing and mixing periods on mechanical properties of the geopolymer composite

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Geopolymer concrete (GPC) can be substituted for Portland cement concrete because it is cement-free, environmentally friendly, cost-effective, durable, and highly performing. It is an excellent solution for sustainable growth in the building sector. The curing and mixing periods are essential for making homogeneous, compact, or highly dense concrete. The primary aim of this research was to analyze the effect of mixing and curing periods on the physical, chemical, and mechanical characteristics of GPC. The experimental analysis investigated its physical properties, chemical properties, and mechanical properties. After the experimental investigation, it was concluded that the workability and setting time decreased with the increase in mixing time. Regarding chemical properties, the density of GPC specimens reduced as the curing time increased, and it increased as the mixing time increased, although drying shrinkage decreased under both scenarios. For mechanical properties, the compressive strength, splitting tensile strength, flexural strength, and elastic modulus initially increased with the increase in mixing and curing time up to 24 h but decreased significantly afterward. In the analysis of the non-destructive test, the rebound strength and ultrasonic pulse velocity exhibited the same pattern as the destructive mechanical characteristics, with the 24- h curing period achieving the highest point among all other curing times. This research found that the optimum oven curing period for GPC was 24 h for gaining mechanical and chemical properties because the mixing and curing periods play an essential role in gaining strength.
Wydawca
Rocznik
Strony
131--147
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
  • Department of Civil Engineering, GLA University Mathura, India
  • Department of Civil Engineering, NITDelhi, India
  • Civil Engineering, College of Engineering, King Saud University Riyadh, Saudi Arabia
  • Faculty of Science and Engineering, University of Wolverhampton Wolverhampton, United Kingdom
Bibliografia
  • [1] Davidovits, J., 30 years of successes and failures in geopolymer applications. market trends and potential breakthroughs, Geopolymer 2002 Conference, October 28-29, 2002, Melbourne, Australia, 2002, p. 1–16
  • [2] Davidovits, J., Geopolymers and geopolymeric materials, J. Therm. Anal., 1989, 35: 429–441
  • [3] Davidovits, J. Geopolymer chemistry and applications, 5th edn. Institut Geopolymere, France, 2020
  • [4] Davidovits, J. Geopolymer chemistry & applications, Institut Geopolymere, France, 2015
  • [5] Bajpai, R., Choudhary, K., Srivastava, A., Sangwan, K.S., Singh, M., Environmental impact assessment of fly ash and silica fume based geopolymer concrete, J. Clean. Prod., 2020, 254: 120147. DOI:10.1016/j.jclepro.2020.120147
  • [6] Dener, M., Altunhan, U., Benli, A., A green binder for cold weather applications: enhancing mechanical performance of alkali-activated slag through modulus, alkali dosage, and Portland cement substitution, Arch. Civ. Mech. Eng., 2024, 24(3): 1–12. DOI:10.1007/s43452-024-00991-w
  • [7] Dener, M., Karatas, M., Mohabbi, M., High temperature resistance of self compacting alkali activated slag/portland cement composite using lightweight aggregate, Constr. Build. Mater., 2021, 290: 123250. DOI:10.1016/j.conbuildmat.2021.123250
  • [8] Vieira Ramos, F.J.H.T., Reis, R.H.M., Grafova, I., Grafov, A., Monteiro, S.N., Eco-friendly recycled polypropylene matrix composites incorporated with geopolymer concrete waste particles, J. Mater. Res. Technol., 2020, 9(3): 3084–3090. DOI:10.1016/j.jmrt.2020.01.054
  • [9] Nuaklong, P., Sata, V., Chindaprasirt, P., Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens, Constr. Build. Mater., 2018, 161: 365–373. DOI:10.1016/j.conbuildmat.2017.11.152
  • [10] Hassan, A., Arif, M., Shariq, M., Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure, J. Clean. Prod., 2019, 223: 704–728. DOI:10.1016/j.jclepro.2019.03.051
  • [11] Yip, C.K., Lukey, G.C., Provis, J.L., van Deventer, J.S.J., Van Deventer, J.S.J., Effect of calcium silicate sources on geopolymerisation, Cem. Concr. Res., 2008, 38: 554–564. DOI:10.1016/j.cemconres.2007.11.001
  • [12] Dener, M., Mechanical and durability properties of alkali-activated slag/waste basalt powder mixtures, Proc. Inst. Mech. Eng., Part. L J. Mat. Des. Appl., Aug 2023, 237(10): 2250–2265. DOI:10.1177/14644207231193615
  • [13] Hutagi, A., Khadiranaikar, R.B., Ahmad, A., Behavior of geopolymer concrete under cyclic loading, Constr. Build. Mater., 2020, 246: 118430. DOI:10.1016/j.conbuildmat.2020.118430
  • [14] Jayanthi, N., Ghosh, T., Meena, R.K., Verma, M., Length and width of low-light, concrete hairline crack detection.pdf, Asian J. Civ. Eng., 2024, 25(3): 2705–2714. DOI:10.1007/s42107-023-00939-0
  • [15] Erdogan, S.T., Properties of ground perlite geopolymer mortars, J. Mater. Civ. Eng., 2015, DOI:10: 04014210. 10.1061/(ASCE)MT.1943-5533.0001172
  • [16] Verma, M., Nigam, M., Effect of FRP on the strength of geopolymer concrete, AIP Conf. Proc., 2023, 2721(1): 020030. DOI:10.1063/5.0154114
  • [17] Vickers, L., Van Riessen, A., Rickard, W.D.A. Fire-resistant geopolymers role of fibres and fillers to enhance thermal properties, Singapore Heidelberg New York Dordrecht London: Springer; 2015. DOI:10.1007/978-981-287-311-8
  • [18] Zhang, B., Mackenzie, Æ.K.J.D., Brown, I.W.M.M., MacKenzie, K.J.D., Brown, I.W.M.M., Crystalline phase formation in metakaolinite geopolymers activated with NaOH and sodium silicate, J. Mater. Sci., 2009, 44: 4668–4676. DOI:10.1007/s10853-009-3715-1
  • [19] Nguyen, K.T., Nguyen, Q.D., Le, T.A., Shin, J., Lee, K., Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches, Constr. Build. Mater., 2020, 247: 118581. DOI:10.1016/j.conbuildmat.2020.118581
  • [20] Pacheco-Torgal, F., Abdollahnejad, Z., Miraldo, S., Baklouti, S., Ding, Y., An overview on the potential of geopolymers for concrete infrastructure rehabilitation, Constr. Build. Mater., 2012, 36: DOI:1053–1058. 10.1016/j.conbuildmat.2012.07.003
  • [21] Cao, V.D., Bui, T.Q., Kjøniksen, A.L., Thermal analysis of multi-layer walls containing geopolymer concrete and phase change materials for building applications, Energy, 2019, 186: 115792. DOI:10.1016/j.energy.2019.07.122
  • [22] Pan, Z., Sanjayan, J.G., Stress–strain behaviour and abrupt loss of stiffness of geopolymer at elevated temperatures, Cem. Concr. Compos., 2010, 32(9): 657–664. DOI:10.1016/j.cemconcomp.2010.07.010
  • [23] Cao, V.D, Pilehvar S., Salas-Bringas C., Szczotok A.M., Rodriguez J.F., Carmona M., et al., Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications, Energy Convers. Manag., 2017, 133: 56–66. DOI:10.1016/j.enconman.2016.11.061
  • [24] Dhawan, A., Verma, M., Goel, R., Effect of an inorganic compound on geopolymer concrete and ordinary portland cement concrete, Libr. Prog. Int., 2024, 44(3): 8368–8383
  • [25] Dhawan, A., Verma, M., Goel, R., Evaluating economic indexing between various kinds of geopolymer concrete to ordinary cement concrete, Libr. Prog. Int., 2024, 44(3): 4939–4955
  • [26] Foster, S.J., Amin, A., The behaviour of steel-fibre- reinforced geopolymer concrete beams in shear, Mag. Concr. Res., 2013, 65: 5
  • [27] Rangan, B.V., Geopolymer concrete for environmental protection, Indian Concr. J., 2014, 88: 41–59
  • [28] Sing Ng, T., Wales, S., Ali Amin, A., Stephen Foster, A.J., The behaviour of steel-fibre-reinforced geopolymer concrete beams in shear, Mag. Concr. Res., 2013, 65(5): 308–318. DOI:10.1680/macr.12.00081
  • [29] Jeyasehar, C.A., Salahuddin, M. Development of fly ash based geopolymer concrete precast elements, Annamalai University, 2013, p. 1–77
  • [30] Singh, B., Ishwarya, G., Gupta, M., Bhattacharyya, S.K., Geopolymer concrete: A review of some recent developments, Constr. Build. Mater., 2015, 85: 78–90. DOI:10.1016/j.conbuildmat.2015.03.036
  • [31] Nigam, M., Verma, M., Effect of nano-silica on the fresh and mechanical properties of conventional concrete, Forces Mech., 2023, 10(22): 100165. DOI:10.1016/j.finmec.2022.100165
  • [32] Nigam, M., Verma, M., Prediction of compressive strength of nano-silica concrete by using random forest algorithm, Asian J. Civ. Eng., 2024, 25: 5205-5213. DOI:10.1007/s42107-024-01107-8
  • [33] Van Jaarsveld, J.G.S., Van Deventer, J.S.J., Lukey, G.C., The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers, Chem. Eng. J., 2002, 89: 63–73
  • [34] Nagajothi, S., Elavenil, S., Influence of aluminosilicate for the prediction of mechanical properties of geopolymer concrete – artificial neural network, Silicon, 2020, 12(5): 1011–1021. DOI:10.1007/s12633-019-00203-8
  • [35] Wongsa, A., Kunthawatwong, R., Naenudon, S., Sata, V., Chindaprasirt, P., Natural fiber reinforced high calcium fly ash geopolymer mortar, Constr. Build. Mater., 2020, 241: 118143. DOI:10.1016/j.conbuildmat.2020.118143
  • [36] Xu, F., Deng, X., Peng, C., Zhu, J., Chen, J., Mix design and flexural toughness of PVA fiber reinforced fly ash-geopolymer composites, Constr. Build. Mater., 2017, 150: 179–189. DOI:10.1016/j.conbuildmat.2017.05.172
  • [37] Biondi, L., Vlachakis, C., Hamilton, A., Ambient cured fly ash geopolymer coatings for concrete, Materials, 2019, 12: 1–24. DOI:10.3390/ma12060923
  • [38] Arunkumar, K., Muthukannan, M., Suresh, A., Chithambar Ganesh, A., Mitigation of waste rubber tire and waste wood ash by the production of rubberized low calcium waste wood ash based geopolymer concrete and influence of waste rubber fibre in setting properties and mechanical behavior, Environ. Res., 2021, 194: 110661. DOI:10.1016/j.envres.2020.110661
  • [39] Jithendra, C., Elavenil, S., Influences of parameters on slump flow and compressive strength properties of aluminosilicate based flowable geopolymer concrete using taguchi method, Silicon, 2020, 12(3): 595–602. DOI:10.1007/s12633-019-00166-w
  • [40] Gupta, A., Gupta, N., Saxena, K.K., Mechanical and durability characteristics assessment of geopolymer composite (GPC) at varying silica fume content, J. Compos. Sci., 2021, 5(9): 237. DOI:10.3390/JCS5090237
  • [41] Shehata, N., Mohamed, O.A., Sayed, E.T., Abdelkareem, M.A., Olabi, A.G., Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials, Sci. Total. Environ., 2022, 836: 155577. DOI:10.1016/j.scitotenv.2022.155577
  • [42] Suriya Prakash, A., Kumar, S.G., Suriya, A., Senthil, G., Fly, A., Experimental study on geopolymer concrete using steel fibres, Int. J. Eng. Trends Technol., 2015, 21(8): 396–399
  • [43] Bhattacharjee, R., Laskar, A.I., Rheological behavior of fly ash based geopolymer concrete, 35th Conference on our world in concrete & structures, Singapore, 2010, p. 1–7
  • [44] Kantarci, F., Ekinci, E., Effect of naoh concentrations and curing temperatures on mechanical properties of geopolymer pastes produced from fly ash and elazığ ferrochrome slag, Int. J. Mech. Prod. Eng., 2018, 5(12): 97–99
  • [45] Venkatesan, R.P., Pazhani, K.C., Strength and durability properties of geopolymer concrete made with ground granulated blast furnace slag and black rice husk ash, KSCE J. Civ. Eng., 2016, 20: 2384–2391. DOI:10.1007/s12205-015-0564-0
  • [46] Wiyono, D., Hardjito, D., Antoni, P., Hardjito, D., Improving the durability of pozzolan concrete using alkaline solution and geopolymer coating, Procedia Eng., 2015, 125: 747–753. DOI:10.1016/j.proeng.2015.11.121
  • [47] Ba, Z., Bradi, V., Mechanical and microstructural properties of alkali-activated fly ash geopolymers, J. Hazard. Mater., 2010, 181: 35–42. DOI:10.1016/j.jhazmat.2010.04.064
  • [48] Wang, Y., Zheng, T., Zheng, X., Liu, Y., Darkwa, J., Zhou, G., Thermo-mechanical and moisture absorption properties of fly ash-based lightweight geopolymer concrete reinforced by polypropylene fibers, Constr. Build. Mater., 2020, 251: 118960. DOI:10.1016/j.conbuildmat.2020.118960
  • [49] Zhuang, X.Y, Chen L., Komarneni S., Zhou C.H., Tong D.S., Yang H.M., et al., Fly ash-based geopolymer: Clean production, properties and applications, J. Clean. Prod., 2016, 125: 253–267. DOI:10.1016/j.jclepro.2016.03.019
  • [50] Upreti, K., Verma, M., Prediction of compressive strength of high-volume fly ash concrete using artificial neural network, J. Eng. Res. App., 2022, 1(2): 24–32. DOI:10.55953/JERA.2022.2104
  • [51] Upreti, K, Verma M., Agrawal M., Garg J., Kaushik R., Agrawal C., et al., Prediction of mechanical strength by using an artificial neural network and random forest algorithm, J. Nanomater., 2022, 2022: 1–12. DOI:10.1155/2022/7791582
  • [52] Kumar, N., Raut, R.D., Upreti, K., Alam, M.S., Shafiuddin, M., Verma, M., Environmental concern in TPB model for sustainable IT adoption, International Conference on Information Systems and Intelligent Applications, Lecture Notes in Networks and Systems, Vol. 550, 2023, p. 59–70. DOI:10.1007/978-3-031-16865-9_5
  • [53] Kumar, R., Verma, M., Dev, N., Lamba, N., Influence of chloride and sulfate solution on the long‐term durability of modified rubberized concrete, J. Appl. Polym. Sci., 2022, 139: 1–15. 10.1002/app.52880
  • [54] Kumar, R., Verma, M., Dev, N., Analysis of PCE-based superplasticiser for the different types of cement using marsh cone test, Evergreen, 2024, 11(2): 665–672. 10.5109/7183337
  • [55] Kumar, R., Verma, M., Dev, N., Investigation on the effect of seawater condition, sulphate attack, acid attack, freeze–thaw condition, and wetting–drying on the geopolymer concrete, Iran. J. Sci. Technol. Trans. Civ. Eng.Trans. Civ. Eng., 2022, 46(4): 2823–2853. DOI:10.1007/s40996-021-00767-9
  • [56] Sharma, U., Gupta, N., Verma, M., Prediction of compressive strength of geopolymer concrete using artificial neural network, Asian J. Civ. Eng., 2023, 24(8): 2837–2850. DOI:10.1007/s42107-023-00678-2
  • [57] Sharma, U., Gupta, N., Bahrami, A., Özkılıç, Y.O., Verma, M., Behavior of fibers in geopolymer concrete: A comprehensive review, Buildings, 2024, 14(136): 1–28. DOI:10.3390/buildings14010136
  • [58] Sharma, U., Gupta, N., Verma, M., Prediction of compressive strength of GGBFS and flyash-based geopolymer composite by linear regression, lasso regression, and ridge regression, Asian J. Civ. Eng., 2023, 24(8): 3399–3411. DOI:10.1007/s42107-023-00721-2
  • [59] Chouksey, A., Verma, M., Dev, N., Rahman, I., Upreti, K., An investigation on the effect of curing conditions on the mechanical and microstructural properties of the geopolymer concrete, Mater. Res. Express, 2022, 9(5): 55003. DOI:10.1088/2053-1591/ac6be0
  • [60] Saranya, P., Nagarajan, P., Shashikala, A.P., Behaviour of GGBS-dolomite geopolymer concrete beam-column joints under monotonic loading, Structures, 2020, 25: 47–55. DOI:10.1016/j.istruc.2020.02.021
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30441393-0225-4a8f-8d65-affd19dba60d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.