Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Inequalities are essential in pure and applied mathematics. In particular, Opial’s inequality and its generalizations have been playing an important role in the study of the existence and uniqueness of initial and boundary value problems. In this work, some new Opial-type inequalities are given and applied to generalized Riemann-Liouville-type integral operators.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20230149
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
- Facultad de Ingeniería, Universidad del Desarrollo, Santiago de Chile, Chile
autor
- Mathematics and Computer Science Department, St. Louis University, Madrid Campus, Spain
autor
- Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain
autor
- Facultad de Matemáticas, Universidad Autónoma de Guerrero, Acapulco, Guerrero, México
Bibliografia
- [1] S. Bermudo, P. Kórus, and J. E. Nápoles, On q-Hermite-Hadamard inequalities for general convex functions, Acta Math. Hungar. 162 (2020), no. 1, 364–374.
- [2] Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal. [electronic only] 1 (2010), no. 1, 51–58.
- [3] J. Han, P. O. Mohammed, and H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math. 18 (2020), no. 1, 794–806.
- [4] H. Kalsoom, M. Latif, Z. Khan, and M. Vivas-Cortez, Some new Hermite-Hadamard-Fejér fractional type inequalities for h-convex and harmonically h-convex interval-valued functions, Math. 10 (2022), no. 1, 74.
- [5] P. O. Mohammed and I. Brevik, A New version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry 12 (2020), no. 4, 610.
- [6] S. Mubeen, S. Habib, and M. N. Naeem, The Minkowski inequality involving generalized k-fractional conformable integral, J. Inequal. Appl. 2019 (2019), no. 1, 81.
- [7] K. S. Nisar, F. Qi, G. Rahman, S. Mubeen, and M. Arshad, Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric k-function, J. Inequal. Appl. 2018 (2018), no. 1, 135.
- [8] Y. Quintana, J. M. Rodríguez, and J. M. Sigarreta, Jensen-type inequalities for convex and m-convex functions via fractional calculus, Open Math. 20 (2022), 946–958.
- [9] G. Rahman, T. Abdeljawad, F. Jarad, A. Khan, and K. S. Nisar, Certain inequalities via generalized proportional Hadamard fractional integral operators, Adv. Differ Equ. 2019 (2019), no. 1, 454.
- [10] G. Rahman, K. S. Nisar, B. Ghanbari, and T. Abdeljawad, On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals, Adv. Differ Equ. 2020 (2020), no. 1, 368.
- [11] S. Rashid, M. A. Noor, K. I. Noor, and Y.-M. Chu, Ostrowski type inequalities in the sense of generalized -fractional integral operator for exponentially convex functions, AIMS Math. 5 (2020), no. 3, 2629–2645.
- [12] Y. Sawano and H. Wadade, On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Morrey space, J. Fourier Anal. Appl. 19 (2012), no. 1, 20–47.
- [13] E. Set, M. Tomar, and M. Z. Sarikaya, On generalized Grüss type inequalities for k-fractional integrals, Appl. Math. Comput. 269 (2015), 29–34.
- [14] M. Vivas-Cortez, F. Martínez, J. E. Nápoles Valdes, and J. E. Hernández, On Opial-type inequality for a generalized fractional integral operator, Demonstr. Math. 55 (2022), no. 1, 695–709.
- [15] P. Bosch, H. J. Carmenate, J. M. Rodríguez, and J. M. Sigarreta, Generalized inequalities involving fractional operators of the Riemann-Liouville type, AIMS Math. 7 (2021), no. 1, 1470–1485.
- [16] A. Carpinteri and F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Springer, Vienna, 1997.
- [17] A. Kilbas, O. Marichev, and S. Samko, Fractional Integrals and Derivatives. Theory and Applications, Gordon & Breach, Pennsylvania, 1993.
- [18] Z. Opial, Sur une inégalité, Ann. Pol. Math. 8 (1960), no. 1, 29–32.
- [19] R. Agarwal and P. Pang, Opial Inequalities with Applications in Differential and Difference Equations, Springer, Netherlands, 2013.
- [20] V. Lakshmikantham and R. Agarwal, Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, World Scientific, Singapore, 1993.
- [21] D. Bainov and P. Simeonov, Integral Inequalities and Applications, Kluwer Academic Publishers, Amsterdam, 1992.
- [22] J. Li, Opial-type integral inequalities involving several higher order derivatives, J. Math. Anal. Appl. 167 (1992), 98–100.
- [23] D. S. Mitrinovic, J. Pecaric, and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Springer, Netherlands, 2012.
- [24] V. Maz’ya, Sobolev Spaces, Springer, Berlin Heidelberg, 2013.
- [25] B. Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), no. 1, 31–38.
- [26] V. Alvarez, D. Pestana, J. M. Rodríguez, and E. Romera, Weighted Sobolev spaces on curves, J. Approximation Theory 119 (2002), no. 1, 41–85.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30413f52-7f92-455a-8adc-812402024880
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.