PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical investigation of grain size dependence of microhardness in high nickel-containing reheated weld metal

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Grain size dependence of microhardness has been addressed in the bainitic reheated weld metals by in situ observation of morphological evolution and characterization of microstructural development. A higher cooling rate promotes the boundary of smaller prior austenite grains to provide more effective sites for primary bainitic ferrite nucleation, yet a lower cooling rate is increasingly beneficial to sympathetic nucleation as well as impingement of secondary bainitic ferrite. The microstructures, obtained by cooling at a higher rate and composed of abundant lath bainite, are closer to the microstructures in the raw weld metal than those cooled at a lower rate, including lath bainite, acicular ferrite and intercritical ferrite. Microhardness is decisive by prior austenite grain size mainly, as well as microstructures. Smaller grains contribute notably to microhardness, and it is worth stressing that the sizes of smaller grains lie on prior austenite grain boundaries rather than the subboundaries generated by intragranular acicular ferrite and intercritical ferrite.
Rocznik
Strony
935--942
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
  • State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
autor
  • Department of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
  • State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
autor
  • Department of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
  • State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
autor
  • Atlantic China Welding Concumables, Inc., Zigong 643000, China
autor
  • Atlantic China Welding Concumables, Inc., Zigong 643000, China
Bibliografia
  • [1] A. Lambert-Perlade, A.F. Gourgues, A. Pineau, Austenite to bainite phase transformation in the heat affected zone of a high strength low alloy steels, Acta Materialia 52 (8) (2004) 2337–2348.
  • [2] V. Biss, R.L. Cryderman, Martensite and retained austenite in hot-rolled, low-carbon bainitic steels, Metallurgical and Materials Transactions B 2 (8) (1971) 2267–2276.
  • [3] M. Diaz-Fuentes, A. Iza-Mendia, I. Guttierez, Analysis of different acicular Ferrite microstructures in low-carbon steels by electron backscattered diffraction-study of their toughness behavior, Metallurgical and Materials Transactions A 34 (11) (2003) 2505–2516.
  • [4] R.A. Farrar, P.L. Harrison, Review: acicular ferrite in carbon- manganese weld metals: an overview, Journal of Material Science 22 (11) (1987) 3812–3820.
  • [5] J.R. Yang, C.Y. Huang, C.F. Huang, J.N. Aoh, Influence of acicular ferrite and bainite microstructures on toughness for an ultra-low-carbon alloy steel weld metal, Journal of Material Science Letters 12 (16) (1993) 1290–1293.
  • [6] W. Wang, W. Yan, L. Zhu, P. Hu, Y.Y. Shan, K. Yang, Relation among rolling parameters, microstructures and mechanical properties in an acicular ferrite pipeline steel, Materials Design 30 (9) (2009) 3436–3443.
  • [7] H.J. Hu, G. Xu, F. Liu, L. Wang, L.X. Zhou, Z.L. Xue, Dynamic observation of twin evolution during austenite grain growth in an Fe–C–Mn–Si alloy, International Journal of Materials Research (formerly Zeitschrift fuer Metallkunde) 105 (4) (2014) 337–341.
  • [8] H.K.D.H. Bhadeshia, R.W.K. Honeycombe, Steels: Microstructure and Properties, 3rd ed., Butterworth-Heinemann, London, 2006.
  • [9] P. Zhang, S.X. Li, Z.F. Zhang, General relationship between strength and hardness, Materials Science and Engineering A 529 (1) (2011) 62–73.
  • [10] L.M. Pike, Y.A. Chang, Effect of Ni on vacancy concentrations and hardness in Fe–Al alloys, Metallurgical and Materials Transactions A 29 (7) (1998) 1911–1915.
  • [11] Y. Komizo, H. Terasaki, Optical observation of real materials using laser scanning confocal microscopy. Part 1 – Techniques and observed examples of microstructural changes, Science and Technology Weld Joining 16 (1) (2011) 56–60.
  • [12] F. Liu, G. Xu, Y.L. Zhang, H.J. Hu, L.X. Zhou, Z.L. Xue, In situ observation of the austenite growth in Fe–C–Mn–Si super bainitic steel, International Journal of Minerals Metallurgy and Materials 20 (11) (2013) 1060–1066.
  • [13] P. Kolmskog, A. Borgenstam, M. Hillert, P. Hedström, S.S. Babu, H. Terasaki, Y.I. Komizo, Direct observation that bainite can grow below Ms, Metallurgical and Materials Transactions A 43 (13) (2012) 4984–4988.
  • [14] H. Terasaki, Y. Komizo, Morphology and crystallography of bainite transformation in a single prior-austenite grain of low carbon steel, Metallurgical and Materials Transactions A 44 (6) (2013) 2683–2689.
  • [15] Z. Li, D. Wu, Effects of hot deformation and subsequent austempering on the mechanical properties of Si–Mn TRIP Steels, ISIJ International 46 (1) (2006) 121–128.
  • [16] T. Ko, S.A. Cottrell, The formation of bainite, Journal of Iron Steel Institution 172 (1) (1952) 307–312.
  • [17] H.K.D.H. Bhadeshia, J.W. Christian, Bainite in steels, Metallurgical and Materials Transactions A 21 (3) (1990) 767–797.
  • [18] X.F. Zhang, P. Han, H. Terasaki, M. Sato, Y. Komizo, Analytical investigation of prior austenite grain size dependence of low temperature toughness in steel weld metal, Journal of Material Science and Technology 28 (3) (2012) 241–248.
  • [19] L.Y. Lan, et al., Effect of reheat temperature on continuous cooling bainite transformation behavior in low carbon microalloyed steel, Journal of Material Science 48 (12) (2013) 4356–4364.
  • [20] J.W. Elmer, T.A. Palmer, W. Zhang, B. Wood, T. DebRoy, Kinetic modeling of phase transformations occurring in the HAZ of C–Mn steel welds based on direct observations, Acta Materialia 51 (12) (2003) 3333–3349.
  • [21] S. Zhao, D.L. Wei, R.B. Li, L. Zhang, Effect of cooling rate on phase transformation and microstructure of Nb–Ti microalloyed steel, Materials Transactions 55 (8) (2014) 1274–1279.
  • [22] M. Soliman, H. Palkowski, Development of the low temperature bainite, Archives of Civil and Mechanical Engineering 16 (3) (2016) 403–412.
  • [23] M.J. Santofimia, T. Nguyen-Minh, L. Zhao, R. Petrovb, I. Sabirovd, J. Sietsmab, New low carbon Q&P steels containing film-like intercritical ferrite, Materials Science and Engineering A 527 (23) (2010) 6429–6436.
  • [24] E. Keehan, H.O. Andrén, L. Karlsson, M. Murugananth, H.K.D. H. Bhadeshia, Microstructural and mechanical effects of nickel and manganese on high strength steel weld metals, in: ASM Proceedings of the International Conference: Trends in Welding Research, 2002.
  • [25] S. Khodir, T. Shibayanagi, M. Takahashi, H. Abdel-Aleem, K. Ikeuchi, Microstructural evolution and mechanical properties of high strength 3–9% Ni-steel alloys weld metals produced by electron beam welding, Materials and Design 60 (8) (2014) 391–400.
  • [26] Y. Li, X.L. Wan, W.Y. Lu, A.A. Shirzadi, O. Isayev, O. Hress, K. M. Wu, Effect of Zr–Ti combined deoxidation on the microstructure and mechanical properties of high strength low-alloy steels, Materials Science and Engineering A 659 (6) (2016) 179–187.
  • [27] M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials, 2nd ed., Cambridge University Press, U.K., 2009.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-303c322a-eb93-41f5-b107-b12ccef7b135
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.