PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy storage systems: power grid and energy market use cases

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Current power grid and market development, characterized by large growth of distributed energy sources in recent years, especially in Europa, are according energy storage systems an increasingly larger field of implementation. Existing storage technologies, e.g. pumped-storage power plants, have to be upgraded and extended by new but not yet commercially viable technologies (e.g. batteries or adiabatic compressed air energy storage) that meet expected demands. Optimal sizing of storage systems and technically and economically optimal operating strategies are the major challenges to the integration of such systems in the future smart grid. This paper surveys firstly the literature on the latest niche applications. Then, potential new use case and operating scenarios for energy storage systems in smart grids, which have been field tested, are presented and discussed and subsequently assessed technically and economically.
Rocznik
Strony
495--511
Opis fizyczny
Bibliogr. 49 poz., fig., tab.
Twórcy
  • Fraunhofer Institute for Factory Operation and Automation IFF Sandtorstr. 22, 39106 Magdeburg, Germany
Bibliografia
  • [1] https://yearbook.enerdata.net, accessed November 2015.
  • [2] Buchholz M., Styczynski Z., Smart Grid Fundamentals and Technologies in Electricity Networks, Springer (2014).
  • [3] Netzentwicklungsplan 2014, Factsheet, Inhalt, Konsultation, Sensitivitäten und weiteres Verfahren, www.netentwicklungsplan.de
  • [4] Bridier L., David M., Lauret P., Optimal design of a storage system coupled with intermittent renewables, Renewable Energy 67: 2-9 (2014).
  • [5] Quan D. M., Ogliari E., Grimaccia F. et al., Hybrid model for hourly forecast of photovoltaic and wind power, IEEE International Conference on Fuzzy Systems, no. 6622453 (2013).
  • [7] Mathiesen B. V., Lund H., Connolly D., et al., Smart Energy Systems for coherent 100% renewable energy and transport solutions, Applied Energy 145: 139-154 (2015).
  • [8] Kondziella H., Bruckner T., Flexibility requirements of renewable energy based electricity systems – A review of research results and methodologies, Renewable and Sustainable Energy Reviews 53: 10-22 (2016).
  • [9] Stötzer M., Hauer I., Richter M., Styczynski Z. A., Potential of demand side integration to maximize use of renewable energy sources in Germany, Applied Energy 146: 344-352 (2015).
  • [10] Styczynski Z. A., Stötzer M., Müller G., et al., Challenges and barriers of integrating e-cars into a grid with high amount of renewable generation, 44th International Conference on Large High Voltage Electric Systems, p. 9 (2012).
  • [11] Lombardi P., Styczynski Z. A., Sokolnikova T., Suslov K., Use of energy storage in Isolated Micro Grids, Power Systems Computation Conference PSCC, no. 7038361 (2014).
  • [12] Renewables 2015, Global Status Report, Renewable Energy Policy Network for the 21st Century, http://www.ren21.net.
  • [13] Styczynski Z., Lombardi P., Seethapathy R., et al., Electric energy storage and its tasks in the integration of wide-scale renewable resources, Integration of Wide-Scale Renewable Resources Into the Power Delivery System, CIGRE/IEEE PES Joint Symposium (2009).
  • [14] Technology Roadmap Energy Storage, International Energy Agency, OECD/IEA, https://www.iea.org/publications, accessed (2014).
  • [15] Mayer T., Sandurkov B., Evaluierung der Weiterverwendung gebrauchter Lithium-Ionen-Zellen aus der Elektromobilität und Marktübersicht Hausbatterien, EKFAuftragsstudie SWD-10.08.81-12.11 (2013).
  • [16] Fuchs G., Lunz B., Leuthold M., Sauer D. U., Technologischer Überblick zur Speicherung von Elektrizität, Smart Energy for Europe Platform GmbH (SEFEP) (2012).
  • [17] Subramanian M. A., Torardi C. C., Calabrese J. C., et al., A New High-Temperature Superconductor: Bi2Sr3-x Cax Cu2O8+y., Science 26, 239(4843): 1015-1017 (1988).
  • [18] Rehman S., Al-Hadhrami L. M., Alam M. M., Pumped hydro energy storage system: A technological review, Renewable and Sustainable Energy Reviews 44: 586-598 (2015).
  • [19] Deutsches ClenTech Institut DCTI, Speichertechnologien 2013 – Technologien, Anwendungs-bereiche, Anbieter (2013).
  • [20] Lombardi P., Röhrig Ch., Rudion K., et al., An A-CAES pilot installation in the distribution system: A technical study for RES integration, Energy Science & Engineering 2(3): 116-127 (2014).
  • [21] Cigré WG C6.15, Electric Energy Storage Systems, Paris (2011).
  • [22] Cho J., Kleit A. N., Energy storage systems in energy and ancillary markets: A backwards induction approach, Applied Energy 147: 176-183 (2015).
  • [23] Brijs T., De Vos K., De Jonghe C., Belmans R., Statistical analysis of negative prices in European balancing markets, Renewable Energy 80: 53-60 (2015).
  • [24] Liu J., Fang W., Zhang X., Yang C., An Improved Photovoltaic Power Forecasting Model With the Assistance of Aerosol Index Data, IEEE Transactions on Sustainable Energy 6(2), no 7029108: 434-442 (2015).
  • [25] Cholewiński M., Tomków L., Domestic hydrogen installation in Poland Technical and economic analysis, Archives of Electrical Engineering 64(2): 189-196 (2015).
  • [26] Kingsbury R. S., Chu K., Coronell O., Energy storage by reversible electrodialysis: The concentration battery, Journal of Membrane Science 495: 502-516 (2015).
  • [27] Xu M., Ivey D. G., Xie Z., Qu W., Rechargeable Zn-air batteries: Progress in electrolyte development and cell configuration advancement, Journal of Power Sources 283(20743): 358-371 (2015).
  • [28] Baszyński M., Siostrzonek T., Flywheel energy storage control system with the system operating status control via the Internet, Archives of Electrical Engineering 63(3): 457-467 (2014).
  • [29] Baszyński M., Piróg S., Determining the mechanical losses in a high-speed motor on the example of a flywheel energy storage system, Archives of Electrical Engineering 61(3): 299-313 (2012).
  • [30] Kozlowski M., Application of supercapacitors to recuperate energy in diesel-electric locomotives, Archives of Electrical Engineering 54(212): 205-224 (2005).
  • [31] Heuer J., Komarnicki P., Styczynski Z. A., Integration of electrical vehicles into the smart grid in the Harz.EE-mobility research project, IEEE Power and Energy Society General Meeting, no. 6039147 (2011).
  • [32] Rothgang S., Rogge M., Becker J., Sauer D. U., Battery design for successful electrification in public transport, Energies 8(7): 6715-6737 (2015).
  • [33] Ren G., Ma G., Cong N., Review of electrical energy storage system for vehicular applications, Renewable and Sustainable Energy Reviews 41: 225-236 (2015).
  • [34] Lombardi P., Sokolnikova T., Suslov K., Styczynski Z. A., Optimal storage capacity within an autonomous micro grid with a high penetration of renewable energy sources, Innovative Smart Grid Technologies (ISGT Europe), 3rd IEEE PES International Conference and Exhibition on. IEEE (2012).
  • [35] Moskalenko N., Wenge C., Pelzer A., Komarnicki P., Styczynski Z .A., Energy Management System with dynamic component control for efficiency optimization, IEEE PES ISGT Europe 2012, pp. 1-7 (2012).
  • [36] Moskalenko N., Lombardi P., Komarnicki P., Control strategies and infrastructure for a dynamic energy management system (DEMS), IEEE Grenoble Conference PowerTech, no. 6652455 (2013).
  • [37] Sharafi M., El Mekkawy T. Y., Bibeau E. L., Optimal design of hybrid renewable energy systems in buildings with low to high renewable energy ratio, Renewable Energy 83: 1026-1042 (2015).
  • [38] Hussein, A. A., Batarseh, I., Energy management for a grid-tied photovoltaic- wind-storage system - Part II: Operation strategy, IEEE Power and Energy Society General Meeting, no. 6672414 (2013).
  • [39] Gude V. G., Energy storage for desalination processes powered by renewable energy and waste heat sources, Applied Energy 137: 877-898 (2015).
  • [40] Zheng M., Meinrenken C. J., Lackner K. S., Smart households: Dispatch strategies and economic analysis of distributed energy storage for residential peak shaving, Applied Energy 147: 246-257 (2015).
  • [41] Parra D., Gillott M., Norman S. A., Walker G. S., Optimum community energy storage system for PV energy time-shift, Applied Energy 137: 576-587 (2015).
  • [42] Zavadil R., Renewable generation forecasting: The science, applications, and outlook, Proceedings of the Annual Hawaii International Conference on System Sciences, no. 6480115: 2252-2260 (2013).
  • [43] Assresahegn B. D., Brousse T., Bélanger D., Advances on the use of diazonium chemistry for functionalization of materials used in energy storage systems, Carbon 92: 362-381 (2015).
  • [44] Manthiram A., Chung S.-H., Zu C., Lithium-sulfur batteries: Progress and prospects, Advanced Materials 27(12): 1980-2006 (2015).
  • [45] Ha S., Gallagher K. G., Estimating the system price of redox flow batteries for grid storage, Journal of Power Sources 296: 122-132 (2015).
  • [46] Cunha A., Martins J., Rodrigues N., Brito F. P., Vanadium redox flow batteries: A technology review, International Journal of Energy Research 39(7): 889-918 (2015).
  • [47] Rothgang S., Baumhöfer T., van Hoek H., et al., Modular battery design for reliable, flexible and multi-technology energy storage systems, Applied Energy 137: 931-937 (2015).
  • [48] Herlender K., Styczynski Z., Dominik H., Prokhovnik A., Determination of a Battery Storage Module Size for Distribution, Distributed Energy Storage for Power Systems, Aachen, Verlag Mainz ISBN 3-89653-3363 (1998).
  • [49] Balischewski S., Wenge C., Roehrig C., Komarnicki P., Styczynski Z. A., Zellenrecycling im stationären Batteriespeicher. Zellselektion, Speicherkonzeption und Systemtests, 5th Power & Energy Summer Summit 2013 (PESS'13), IEEE Student Branch, pp. 23-25 (2013).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
PL
Błąd w numeracji bibliografii (pominięto pozycję 6), zamiast 49 pozycji jest 48 pozycji.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3030ea8a-cadc-4a78-b44e-b4cfeb12f724
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.