PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An application of intuitionistic fuzzy analytic hierarchy process in ship system risk estimation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we extend the analytic hierarchy process (AHP) method and the Atanassov’s intuitionistic fuzzy set (IFS) into the intuitionistic fuzzy analytic hierarchy process (IFAHP) with application in ship system risk estimation. In the safety engineering, risk estimation is in practice confronted with difficulties connected with shortage of data. In such cases, we have to rely on subjective estimations made by persons with practical knowledge in the field of interest, i.e. experts. However, in some realistic situations, the decision makers might be reluctant or unable to assign the crisp evaluation values to the comparison judgments due to his/her limited knowledge. In other words, there is a certain degree of hesitancy in human cognition and his judgment. Taking advantages of IFSs in dealing with ambiguity and uncertainty into account, the IFAHP can be used to handle with the subjective preferences of experts, who may have insufficient knowledge of the problem domain or uncertainty in assigning the evaluation values to the objects considered. This paper also develops a new knowledge-based ranking method to derive the priority vector of the hierarchy. An illustrative example of the propulsion risk estimation of container carriers operating on the North Atlantic line is given to show the applicability and effectiveness of the proposed method.
Twórcy
autor
  • Gdynia Maritime University, Department of Engineering Sciences Morska Street 81-87, 81-225 Gdynia, Poland tel.:+48 586901306
Bibliografia
  • [1] Atanassov, K. T., Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, 20, pp. 87-96, 1986.
  • [2] Brandowski, A., Frąckowiak, W., Nguyen, H., Podsiadło, A., Risk estimation of the seagoing ship casualty as the consequence of the propulsion loss, Proceedings of ESREL 2009 Conference, Taylor & Francis, Vol. 3, pp. 2345-2349, 2009.
  • [3] Chen, S. M., Tan, J. M., Handling multicriteria fuzzy decision-making problems based on vague set theory, Fuzzy Sets and Systems, 67, pp. 221-236, 1996.
  • [4] De, S. K., Biswas, R., Roy, A. R., An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Sets Syst., Vol. 117, pp. 209-213, 2001.
  • [5] Herrera-Viedma, E., Chiclana, F., Herrera, F., Alonso, S., A group decision-making model with incomplete fuzzy preference relations based on additive consistency, IEEE Trans. Syst., Man, Cybern., Vol. 37, No. 1, pp. 176-189, 2007.
  • [6] Hong, D. H., Choi, C. H., Multicriteria fuzzy decision making problems based on vague set theory, Fuzzy Sets and Systems, 114, pp. 103-113, 2000.
  • [7] Laarhoven, P. J. M., Pedrycz, W., A fuzzy extension of Saaty’s priority theory, Fuzzy Sets Syst., Vol. 11, pp. 229-241, 1983.
  • [8] Li, Y. H., Olson, D. L., Qin, Z., Similarity measures between intuitionistic fuzzy (vague) sets: A comparative analysis, Pattern Recognition Letters, 28, pp. 278-285, 2007.
  • [9] Nguyen, H., A novel similarity/dissimilarity measure for intuitionistic fuzzy sets and its application in pattern recognition, Expert Systems with Applications, 45, pp. 97-107, 2016.
  • [10] Papageorgiou, E. I., Iakovidis, D. K., Intuitionistic fuzzy cognitive maps, IEEE Trans. Fuzzy Syst., Vol. 21, No. 2, pp. 342-354, 2013.
  • [11] Saaty, T. L., A scaling method for priorities in a hierarchical structure, J. Math. Psychol., Vol. 15, pp. 234-281, 1977.
  • [12] Szmidt, E., Kacprzyk, J., Geometric similarity measures for the intuitionistic fuzzy sets, in: 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013), pp. 840-847, 2013.
  • [13] Szmidt, E., Kacprzyk, J., Bujnowski, P., How to measure the amount of knowledge conveyed by Atanassov’s intuitionistic fuzzy sets, Information Sciences, 257, pp. 276-285, 2014.
  • [14] Tan, C., Chen, X., Dynamic similarity measures between intuitionistic fuzzy sets and its application, International Journal of Fuzzy Systems, Vol. 16, No. 4, pp. 511-519, 2014.
  • [15] Vlachos, I. K., Sergiadis, G. D., Intuitionistic fuzzy information applications to pattern recognition, Pattern Recog. Lett., Vol. 28, pp. 197-206, 2007.
  • [16] Xu, Z. S., Intuitionistic fuzzy aggregation operators, IEEE Transactions on Fuzzy Systems, 15, pp. 1179-1187, 2007.
  • [17] Xu, Z. S., Intuitionistic preference relations and their application in group decision making, Information Sciences, 177, pp. 2363-2379, 2007.
  • [18] Xu, Z. S, Yager, R. R., Dynamic intuitionistic fuzzy multi-attribute decision making, Int. J. Approx. Reas., Vol. 48, pp. 246-262, 2008.
  • [19] Xu, Z. S., Cai, X. Q., Szmidt, E., Algorithms for estimating missing elements of incomplete intuitionistic preference relations, Int. J. Intell. Syst., Vol. 26, pp. 787-813, 2011.
  • [20] Xu, Z. S., Liao, H. C., Intuitionistic fuzzy analytic hierarchy process, IEEE Transactions on Fuzzy Systems, Vol. 22, No. 4, 2014.
  • [21] Zadeh, L. A., Fuzzy sets, Information and control, 8(3), pp. 338-353, 1965.
  • [22] http://www.iumi.com/committees/facts-a-figures-committee/statistics.
  • [23] IMO, Code for the investigation of marine casualties and incidents, IMO, Resolution A.849(20), London 1997.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-302c6f01-9afe-4698-901a-0813e594b24c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.