PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Indirect torque observer-based sensor-less efficient control of bearingless switched reluctance motor using global sliding mode and square currents control method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Bearingless Switched Reluctance Motor (BSRM) is a new technology motor, which overcomes the problems of maintenances required associated with mechanical contacts and lubrication of rotor shaft effectively. In addition, it also improves the output power developed and rated speed. Hence, the BSRM can achieve high output power and super high speed with less size and cost. It has a considerable ripple in the net-torque due to its critical non-linearity and the salient pole structures of both stator and rotor poles. The resultant torque ripple, especially in these motors, causes the more vibrations and acoustic noises will affects the levitated rotor safety also. Practically at high-speed operations, the accurate measurement of the rotor position is complicated for conventional mechanical sensors. A new square currents control with global sliding mode control based sensorless torque observer is proposed to minimize the torque ripple and achieve a smooth, robust operation without using any mechanical sensors. The proposed controller is designed based on the error between the reference and measured torque values. The sliding mode torque observer measures the torque from the actual phase voltages, currents, and look-up tables. The simulation model has been modelled to validate the proposed methodology. From the simulation outputs, it is clear that the reduction of torque ripple by the proposed method shows improved than the conventional sliding mode controller. The overall system is more robust to the external disturbances, and it also gets efficient torque profile.
Rocznik
Strony
53--80
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • Department of Electrical Electronics and Communication Engineering, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India
  • Department of Electrical Engineering, BIT Sindri, Dhanbad 828123, Jharkhand, India
  • Ingenium Research Group, University of Castilla-La Mancha, Spain
  • Department of EEE, JNTU Anantapur, College of Engineering, Pulivendula-516390, Andhra Pradesh, India
  • University of Tabriz, Tabriz, Iran
Bibliografia
  • [1] M. Chaple, S. Bodkhe, and P. Daigavane: Torque ripple minimization in switch reluctance motor drives: An ANFACO based control, International Journal of Intelligent Engineering and Systems, 11(4), (2018), 264-274, DOI: 0.22266/ijies2018.0831.26.
  • [2] S. Jebarani Evangeline and S. Suresh Kumar: Torque ripple minimization of switched reluctance drives - A survey, IET Conference Publications, 2010(563 CP), (2010), 1024-1028, DOI: 10.1049/cp.2010.0177.
  • [3] I. Husain and M. Ehsani: Torque ripple minimization in switched reluctance motor drives by PWM current control, IEEE Transactions on Power Electronics, 11(1) (1996), 83-88, DOI: 10.1109/63.484420.
  • [4] X. Zhang, Q. Yang, M. Ma, Z. Lin, and S. Yang: A switched reluctance motor torque Ripple reduction strategy with deadbeat current control and active thermal management, IEEE Transactions on Vehicular Technology, 69(1), (2020), 317-327, DOI: 10.1109/TVT.2019.2955218.
  • [5] X. Gao, X. Wang, Z. Li, and Y. Zhou: A review of torque ripple control strategies of switched reluctance motor, International Journal of Control and Automation, 8(4), (2015), 103-116, DOI: 10.14257/ijca.2015.8.4.13.
  • [6] F. P. G. Marquez: An approach to remote condition monitoring systems management. In 2006 IET International Conference On Railway Condition Monitoring, (2006), 156-160.
  • [7] S. Ogonowski, D. Bismor, and Z. Ogonowski: Control of complex dynamic nonlinear loading process for electromagnetic mill, Archives of Control Sciences, 30(3) (2020), 471-500, DOI: 10.24425/acs.2020.134674.
  • [8] H. Torkaman and E. Afjei: Comprehensive detection of eccentricity fault in Switched Reluctance Machines using High Frequency Pulse Injection, IEEE Transactions on Power Electronics, 28(3), (2013), 1382-1390, DOI: 10.1109/TPEL.2012.2205947.
  • [9] H. Cai, H. Wang, M. Li, S. Shen, Y. Feng, and J. Zheng: Torque ripple reduction for switched reluctance motor with optimized PWM control strategy, Energies, 11(11), (2018), DOI: 10.3390/en11113215.
  • [10] R. S. Wallace and D. G. Taylor: Torque ripple reduction in three-phase switched reluctance motors, Proceedings of the American Control Conference, 22 (1990), 1526-1527, DOI: 10.23919/acc.1990.4790992.
  • [11] N. Inanc and V. Ozbulur: Torque ripple minimization of a switched reluctance motor by using continuous sliding mode control technique, Electric Power Systems Research, 66(3), (2003), 241-251, DOI: 10.1016/S0378- 7796(03)00093-2.
  • [12] H. S. Ro, H. G. Jeong, and K. B. Lee: Torque ripple minimization of switched reluctance motor using direct torque control based on sliding mode control, IEEE International Symposium on Industrial Electronics, 2013, DOI: 10.1109/ISIE.2013.6563641.
  • [13] F .P. G. Márquez: A new method for maintenance management employing principal component analysis, Structural Durability and Health Monitoring, 6(2), (2010), 89-100, DOI: 10.3970/sdhm.2010.006.089.
  • [14] H. A. Maksoud: Torque ripple minimization of a switched reluctance motor using a torque sharing function based on the overlap control technique, Engineering, Technology and Applied Science Research, 10(2), (2020), 5371-5376,
  • [15] N. Saha, A. K. Panda and S. Panda: Speed control with torque ripple reduction of switched reluctance motor by many optimizing liaison technique, Journal of Electrical Systems and Information Technology, 5(3), (2018), 829-842, DOI: 10.1016/j.jesit.2016.12.013.
  • [16] M. M. Bouiabady, A. D. Aliabad and E. Amiri: Switched reluctance motor topologies: A comprehensive review. In Switched Reluctance Motor - Concept, Control and Applications, A. Tahour and A. G. Aissaoui (Eds.), 1-24, 2017, DOI: 10.5772/intechopen.69149.
  • [17] P. Moreno-Torres, M. Lafoz, M. Blanco, G. Navarro, J. Torres and L. García-Tabarés: Switched reluctance drives with degraded mode for electric vehicles. In Modeling and Simulation for Electric Vehicle Applications, M. A. Fakhfakh (Ed.), 2016, DOI: 10.5772/64431.
  • [18] X. Zan: Switched reluctance motor speed performance simulation study based on torque ripple suppression, International Conference on Advanced Mechatronic Systems, ICAMechS, 1 (2013), 253-257, DOI: 10.1109/ ICAMechS.2013.6681789.
  • [19] M. Zhu, Y. Zhang, Z. Xie, and B. Zhao: Method of reducing noise and torque ripple of switched reluctance motor, Proceedings - 2017 Chinese Automation Congress, CAC 2017, 2017(1), 276-2765, DOI: 10.1109/CAC.2017.8243245.
  • [20] M. A. Hamida, Z. Tir, E. Oued, O. P. Malik, F. Marignetti and C. Frosinone: Sensorless control of switched reluctance machine based on nonlinear observer and fuzzy logic controller. In 4th International Conference on Recent Advances in Electrical Systems, Tunisia, (2019), paper 89.
  • [21] T. Yuvapriya, P. Lakshmi, and S. Rajendiran: Vibration control and performance analysis of full car active suspension system using fractional order terminal sliding mode controller, Archives of Control Sciences, 30(2), (2020), 295-324, DOI: 10.24425/ACS.2020.133501.
  • [22] W. Shang, S. Zhao, Y. Shen, and Z. Qi: A sliding mode fluxlinkage controller with integral compensation for switched reluctance motor, IEEE Transactions on Magnetics, 45(9), (2009), 3322-3328, DOI: 10.1109/TMAG.2009.2021264.
  • [23] M. M. Khater: A sliding mode observer-based sensorless switched reluctance motor drive, Engineering Research Journal, Faculty of Engineering, Minoufiya University, Egypt, 29(4), (2006), 329-335.
  • [24] Z. Hao, Q. Yu, X. Cao, X. Deng and X. Shen: An improved direct torque control for a single-winding bearingless switched reluctance motor, IEEE Transactions on Energy Conversion, 35(3), (2020), 1381-1393, DOI: 10.1109/tec.2020.2988549.
  • [25] L. Senthil Murugan and P. Maruthupandi: Sensorless speed control of 6/4-pole switched reluctance motor with ANFIS and fuzzy-PID-based hybrid observer. Electrical Engineering, 102 (2020), 831-844, DOI: 10.1007/s00202-019-00915-5.
  • [26] K. Yovchev, K. Delchev, and E. Krastev: Constrained output iterative learning control, Archives of Control Sciences, 30(1), (2020), 157-176, DOI: 10.24425/ACS.2020.132590.
  • [27] B. H. Choi, Y. Park, Y. Cho, and M. Lee: Global sliding-mode control. Improved design for a brushless DC motor, IEEE Control Systems Magazine, 21(3), (2001), 27-35, DOI: 10.1109/37.924795.
  • [28] Z. Cheng, C. Hou, and X. Wu: Global sliding mode control for brushless DC motors by neural networks, 2009 International Conference on Artificial Intelligence and Computational Intelligence, AICI 2009, 4(2), (2009), 3-6, DOI: 10.1109/AICI.2009.366.
  • [29] S. K. Spurgeon: Sliding mode observers: A survey, International Journal of Systems Science, 39(8), (2008), 751-764, DOI: 10.1080/0020 7720701847638.
  • [30] R. A. McCann and M. S. Islam: Application of a sliding-mode observer for position and speed estimation in switched reluctance motor drives, IEEE Transactions on Industry Applications, 37(1), (2001), 51-58, DOI: /10.1109/28.903126.
  • [31] Y. J. Zhan: A novel sliding-mode observer for indirect position sensing of switched reluctance motor drives. IEEE Transactions on Industrial Electronics, 46(2), (1999), 390-397, DOI: 10.1109/41.753778.
  • [32] M. S. Islam, I. Husain, R. J. Veillette, and C. Batur: Design and performance analysis of sliding-mode observers for sensorless operation of switched reluctance motors, IEEE Transactions on Control Systems Technology, 11(3), (2003), 383389, DOI: 10.1109/TCST.2003.810375.
  • [33] P. Nageswara Rao, G. V. Siva Krishna Rao, and G. V. Nagesh Kumar: A novel technique for controlling speed and position of bearingless switched reluctance motor employing sensorless sliding mode observer, Arabian Journal for Science and Engineering, 43(8), (2018), 4327-4346, DOI: 10.1007/s13369-017-3027-8.
  • [34] P. N. Rao, N. M. Kumar, S. Padmanaban, M. S. P. Subathra, and A. A. Chand: A novel sensorless approach for speed and displacement control of bearingless switched reluctance motor, Applied Sciences (Switzerland), 10(12), (2020), 1-26, DOI: 10.3390/APP10124070.
  • [35] M. Takemoto, H. Suzuki, A. Chiba, S. Member, T. Fukao and M. A. Rahman: Improved analysis of a bearingless switched, IEEE Transactions on Industry Applications, 37(1), (2001), 26-34, DOI: 10.1109/28.903123.
  • [36] M. Takemoto, A. Chiba, and T. Fukao: A method of determining the advanced angle of square-wave currents in a bearingless switched reluctance motor, IEEE Transactions on Industry Applications, 37(6), (2001), 1702-1709, DOI: 10.1109/28.968181.
  • [37] M. Takemoto, A. Chiba, H. Akagi, and T. Fukao: Radial force and torque of a bearingless switched reluctance motor operating in a region of magnetic saturation, IEEE Transactions on Industry Applications, 40(1), (2004), 103-112, DOI: 10.1109/TIA.2003.821816.
  • [38] H. Wang, Y. Wang, X. Liu, and J. W. Ahn: Design of novel bearingless switched reluctance motor, IET Electric Power Applications, 6(2), (2012), 73-81, DOI: 10.1049/iet-epa.2010.0229.
  • [39] D.-H. Lee and J.-W. Ahn: Design and analysis of hybrid stator bearingless SRM, Journal of Electrical Engineering and Technology, 6(1), (2011), 94-103, DOI: 10.5370/jeet.2011.6.1.094.
  • [40] P. N. Rao, R. Devarapalli, F. P. García Márquez, and H. Malik: Global sliding-mode suspension control of bearingless switched reluctance motor under eccentric faults to increase reliability of motor, Energies, 13(20), (2020), DOI: 10.3390/en13205485.
  • [41] M. Falahi, F. R. Salmasi, and C. Lucas: Modified passivity-based control of switched-reluctance motor with speed and load torque observers, IECON Proceedings (Industrial Electronics Conference), 5 (2006), 1077-1081, DOI: 10.1109/IECON.2006.348019.
  • [42] A. Chaibet, M. Boukhnifer, N. Ouddah, and E. Monmasson: Experimental sensorless control of switched reluctance motor for electrical powertrain system, Energies, 13(12), (2020), 3081, DOI: 10.3390/en13123081.
Uwagi
1. The work reported herewith has been financially by the Dirección General de Universidades, Investigación e Innovación of Castilla-La Mancha, under Research Grant ProSeaWind project (Ref.: SBPLY/19/180501/000102)
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-302b9fe8-780e-4ff4-a1fc-97ea9814c431
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.