PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microfouling development on artificial substrates deployed in the central Red Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microfouling is the initial step in the growth of biofouling on hard substrata submerged in marine waters. In this study, microfouling development on nylon nets submerged in the central Red Sea coast of Saudi Arabia was analyzed during the winter and summer seasons for a period of 5 days each. The results showed a well-established biofilm community on nylon nets submerged for 24 h, with bacteria and diatoms being the primary colonizers. Protein was the major organic component of the biofilm that developed on the nylon nets during the winter and summer seasons. Navicula spp., Nitzschia spp., Cylindrotheca spp., and Pluerosigma spp. were the dominant diatom species settled on the nylon nets. Pseudoalteromonas shioyasakiensis, Planomicrobium sp., Vibrio harveyi and Pseudoalteromonas rubra were the dominant bacteria isolated from the nylon nets. While the abundance of bacteria showed a positive correlation with the nutrient concentration of the biofilm during both winter and summer seasons, diatom density exhibited a significant positive relationship with the biofilm nutrients during the winter season only. The results also revealed significant seasonal variations in the abundance of microfouling organisms and accumulation of nutrients on nylon nets.
Słowa kluczowe
Czasopismo
Rocznik
Strony
219--231
Opis fizyczny
Bibliogr. 77 poz., fot., rys., tab., wykr.
Twórcy
  • King Abdulaziz University, Jeddah, Saudi Arabia
autor
  • King Abdulaziz University, Jeddah, Saudi Arabia
autor
  • King Abdulaziz University, Jeddah, Saudi Arabia
Bibliografia
  • [1] Abdul Azis, P. K., Al-Tisan, I., Sasikumar, N., 2001. Biofouling potential and environmental factors of seawater at a desalination plant intake. Desalination 135 (1-5), 69-82, http://dx.doi.org/10.1016/S0011-9164(01)00140-0.
  • [2] Al-Awadhi, H., Dashti, N., Khanafer, M., Al-Mailem, D., Ali, N., Radwan, S., 2013. Bias problems in culture-independent analysis of environmental bacterial communities: a representative study on hydrocarbonoclastic bacteria. Springer plus 2 (1), 369, http://dx.doi.org/10.1186/2193-1801-2-369.
  • [3] Anil, A. C., Patil, J. S., Mitbavkar, S., D'Costa, P., D'Silva, S., Hegde, S., Naik, R., 2006. Role of diatoms in marine biofouling. In: Tewari, A. (Ed.), Recent Advances on Applied Aspects of Indian Marine Algae with Reference to Global Scenario, Central Salt and Marine Chemicals Research Institute, India 1, 351-365.
  • [4] Bakker, D. P., Busscher, H. J., Zanten, J. V., Veries, J. D., Klijnstra, J. W., Van Der Mei, C. H., 2004. Multiple linear regression analysis of bacterial deposition to polyurethane coatings after conditioning film formation in the marine environment. Microbiology 150 (6), 1779-1784, http://dx.doi.org/10.1099/mic.0.26983-0.
  • [5] Baragi, L. V., Anil, A. C., 2016. Synergistic effect of elevated temperature, pCO2 and nutrients on marine biofilm. Mar. Pollut. Bull. 105 (1), 102-109, http://dx.doi.org/10.1016/j.marpolbul.2016.02.049.
  • [6] Bhosle, N. B., Garg, A., Fernandes, L., Citon, P., 2005. Dynamics of amino acids in the conditioning film developed on glass panels immersed in the surface seawaters of Dona Paula Bay. Biofouling 21 (2), 99-107, http://dx.doi.org/10.1080/08927010500097821.
  • [7] Bhosle, N. B., Sankaran, P. D., Wagh, A. B., 1990. Carbohydrate sources of microfouling material developed on aluminium and stainless steel panels. Biofouling 2 (2), 151-164, http://dx.doi.org/10.1080/08927019009378141.
  • [8] Chung, H. C., Lee, O. O., Huang, Y. L., Mok, S. Y., Kolter, R., Qian, P. Y., 2010. Bacterial community succession and chemical profiles of subtidal biofilms in relation to larval settlement of the polychaete Hydroides elegans. ISME J. 4 (6), 817-828, http://dx.doi.org/10.1038/ismej.2009.157.
  • [9] Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., Lappin-Scott, H. M., 1995. Microbial biofilms. Annu. Rev. Microbiol. 49 (1), 711-745, http://dx.doi.org/10.1146/annurev.mi.49.100195.003431.
  • [10] Dang, H., Lovell, C. R., 2000. Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl. Environ. Microbiol. 66 (2), 467-475, http://dx.doi.org/10.1128/AEM.66.2.467-475.2000.
  • [11] Decho, A. W., 2000. Microbial biofilms in intertidal systems: an overview. Cont. Shelf Res. 20 (10), 1257-1273, http://dx.doi.org/10.1016/S0278-4343(00)00022-4.
  • [12] Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.-F., Guindon, S., Lefort, V., Lescot, M., Claverie, J.-M., Gascuel, O., 2008. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36 (2), W465-W469, http://dx.doi.org/10.1093/nar/gkn180.
  • [13] Dobretsov, S., 2009. Inhibition and induction of marine biofouling by biofilms. In: Flemming, H. C., Murthy, P. S., Venkatesan, R., Cooksey, K. (Eds.), Marine and Industrial Biofouling. Springer, Berlin, 293-313, http://dx.doi.org/10.1007/7142_2008_10.
  • [14] Dobretsov, S., Abed, R. M. M., Teplitski, M., 2013. Mini-review: inhibition of biofouling by marine microorganisms. Biofouling 29 (4), 423-441, http://dx.doi.org/10.1080/08927014.2013.776042.
  • [15] Donlan, R. M., 2002. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8 (9), 881-890, http://dx.doi.org/10.3201/eid0809.020063.
  • [16] DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F., 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28 (3), 350-356, http://dx.doi.org/10.1021/ac60111a017.
  • [17] Edgar, R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32 (5), 1792-1797, http://dx.doi.org/10.1093/nar/gkh340.
  • [18] Fery, N., Al-Subhi, A. M., Zubier, K. M., Bruss, G., 2015. Evaluation of the sea state near Jeddah based on recent observations and model results. J. Oper. Oceanogr. 8 (1), 1-10, http://dx.doi.org/10.1080/1755876X.2015.1014636.
  • [19] Fletcher, M., Marshall, K. C., 1982. Bubble contact angle method for evaluating substratum interfacial characteristics and its relevance to bacterial attachment. Appl. Environ. Microbiol. 44 (1), 184-192.
  • [20] Freckelton, M. L., Brian, T., Nedved, B. T., Hadfield, M. G., 2017. Induction of invertebrate larval settlement: different bacteria, different mechanisms? Sci. Rep. 7, 42557, http://dx.doi.org/10.1038/srep42557.
  • [21] Guo, X., Niu, Z., Lu, D., Feng, J., Chen, Y., Tou, F., Liu, M., Yang, Y., 2017. Bacterial community structure in the intertidal biofilm along the Yangtze Estuary, China. Mar. Pollut. Bull. 124 (1), 314-320, http://dx.doi.org/10.1016/j.marpolbul.2017.07.051.
  • [22] Hadfield, M. G., 2011. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Annu. Rev. Mar. Sci. 3, 453-470, http://dx.doi.org/10.1146/annurev-marine-120709-142753.
  • [23] Hadfield, M. G., Asahina, A., Hennings, S., Nedved, B., 2014. The bacterial basis of biofouling: a case study. Indian J. Mar. Sci. 43 (11), 2075-2084. http://nopr.niscair.res.in/handle/123456789/34577.
  • [24] Hadfield, M. G., Paul, V. J., 2001. Natural chemical cues for settlement and metamorphosis of marine invertebrate larvae. In: McClintock, J. B., Baker, B. J. (Eds.), Marine Chemical Ecology. CRC, Boca Raton, 431-461.
  • [25] Hasle, G. R., Syvertsen, E. E., 1997. Marine diatoms. In: Tomas, C. R. (Ed.), Identifying Marine Phytoplankton. Acad. Press, San Diego, 5-386.
  • [26] Henares, B. M., Higgins, K. E., Boon, E. M., 2012. Discovery of a nitric oxide responsive quorum sensing circuit in Vibrio harveyi. ACS Chem. Biol. 7 (8), 1331-1336, http://dx.doi.org/10.1021/cb300215t.
  • [27] Henke, J. M., Bassler, B. L., 2004. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J. Bacteriol. 186 (20), 6902-6914, http://dx.doi.org/10.1128/JB.186.20.6902-6914.2004.
  • [28] Huang, Y., Callahan, S., Hadfield, M. G., 2012. Recruitment in the sea: bacterial genes required for inducing larval settlement in a polychaete worm. Sci. Rep. 2, 228, http://dx.doi.org/10.1038/srep00228.
  • [29] Huggett, M. J., Nedved, B. T., Hadfield, M. G., 2009. Effects of initial surface wettability on biofilm formation and subsequent settlement of Hydroides elegans. Biofouling 25 (5), 387-399, http://dx.doi.org/10.1080/08927010902823238.
  • [30] Hung, O. S., Gosselin, L. A., Thiyagarajan, V., Wu, R. S. S., Qian, P. Y., 2005. Do effects of ultraviolet radiation on microbial films have indirect effects on larval attachment of the barnacle Balanus amphitrite? J. Exp. Mar. Biol. Ecol. 323 (1), 16-26, http://dx.doi.org/10.1016/j.jembe.2005.02.016.
  • [31] Jain, A., Bhosle, N. B., 2009. Biochemical composition of the marine conditioning film: implications for bacterial adhesion. Biofouling 25 (1), 13-19, http://dx.doi.org/10.1080/08927010802411969.
  • [32] Jenkins, S. R., Martins, G. M., 2010. Succession on hard substrata. In: Dürr, S., Thomason, J. C. (Eds.), Biofouling. Wiley-Blackwell, Oxford, UK, 60-72, http://dx.doi.org/10.1002/9781444315462.
  • [33] Jin, T., Qian, P., 2005. Amino acid exposure modulates the bioactivity of biofilms for larval settlement of Hydroides elegans by altering bacterial community components. Mar. Ecol. Prog. Ser. 297, 169-179, http://dx.doi.org/10.3354/meps297169.
  • [34] Johnson, R. E., Tuchman, N. C., Peterson, C. G., 1997. Changes in the vertical microdistribution of diatoms within a developing periphyton mat. J. North Am. Benthol. Soc. 16 (3), 503-519, http://dx.doi.org/10.2307/1468140.
  • [35] Khomayis, H. S., Al-Harbi, S. M., 2003. Periphyton flora in the coastal water of Jeddah, Saudi Arabia. JKAU Mar. Sci. 14 (1), 3-18.
  • [36] Li, Y.-F., Guo, X.-P., Yang, J.-L., Liang, X., Bao, W.-Y., Shen, P.-J., Shi, Z.-Y., Li, J.-L., 2014. Effects of bacterial biofilms on settlement of plantigrades of the mussel Mytilus coruscus. Aquaculture 433, 434-441, http://dx.doi.org/10.1016/j.aquaculture.2014.06.031.
  • [37] Lowry, O. H., Rosenbrough, N. A., Farr, A. L., Randall, R. J., 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193 (1), 265-275.
  • [38] McElroy, D. J., Doblin, M. A., Murphy, R. J., Hochuli, D. F., Coleman, R. A., 2016. A limited legacy effect of copper in marine biofilms. Mar. Pollut. Bull. 109 (1), 117-127, http://dx.doi.org/10.1016/j.marpolbul.2016.06.011.
  • [39] Mejdandžić, M., Ivanković, T., Pfannkuchen, M., Godrijan, J., Pfannkuchen, D. M., Hrenović, J., Ljubešić, Z., 2015. Colonization of diatoms and bacteria on artificial substrates in the northeastern coastal Adriatic Sea. Acta Bot. Croat. 74 (2), 407-422, http://dx.doi.org/10.1515/botcro-2015-0030.
  • [40] Mitbavkar, S., Anil, A. C., 2000. Diatom colonization on stainless steel panels in estuarine waters of Goa, west coast of India. Indian J. Mar. Sci. 29, 273-276.
  • [41] Mitbavkar, S., Anil, A. C., 2008. Seasonal variations in the fouling diatom community structure from a monsoon influenced tropical estuary. Biofouling 24 (6), 415-426, http://dx.doi.org/10.1080/08927010802340317.
  • [42] Nagarkar, S., Williams, G. A., Subramanian, G., Saha, S. K., 2004. Cyanobacteria-dominated biofilms: a high quality food resource for intertidal grazers. Hydrobiologia 512 (1), 89-95, http://dx.doi.org/10.1023/B:HYDR.0000020313.09924.c1.
  • [43] Omer, W. M., 2010. Ocean Acidification in the Arabian Sea and the Red Sea-factors Controlling pH. (Masters thesis). Faculty of Mathematics and Natural Sciences, Geophysical Institute, Chemical Oceanography, University of Bergen, 61 pp.
  • [44] Passarelli, C., Meziane, T., Thiney, N., Boeuf, D., Jesus, B., Ruivo, M., Jeanthon, C., Hubas, C., 2015. Seasonal variations of the composition of microbial biofilms in sandy tidal flats: focus of fatty acids, pigments and exopolymers. Estuar. Coast. Shelf Sci. 153, 29-37, http://dx.doi.org/10.1016/j.ecss.2014.11.013.
  • [45] Patil, J. S., Anil, A. C., 2005. Biofilm diatom community structure: influence of temporal and substratum variability. Biofouling 21 (3-4), 189-206, http://dx.doi.org/10.1080/08927010500256757.
  • [46] Qian, P.-Y., Lau, S. C. K., Dahms, H.-U., Dobretsov, S., Harder, T., 2007. Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. Mar. Biotechnol. 9 (4), 399-410, http://dx.doi.org/10.1007/s10126-007-9001-9.
  • [47] Raitsos, D. E., Pradhan, Y., Brewin, R. J. W., Stenchikov, G., Hoteit, I., 2013. Remote sensing the phytoplankton seasonal succession of the Red Sea. PLOS ONE 8, e64909, http://dx.doi.org/10.1371/journal.pone.0064909.
  • [48] Ralston, D. K., Jiang, H., Farrar, J. T., 2013. Waves in the Red Sea: response to monsoonal and mountain gap winds. Cont. Shelf Res. 65, 1-13, http://dx.doi.org/10.1016/j.csr.2013.05.017.
  • [49] Rampadarath, S., Bandhoa, K., Puchooa, D., Jeewon, R., Bal, S., 2017. Early bacterial biofilm colonizers in the coastal waters of Mauritius. Electron. J. Biotechnol. 29, 13-21, http://dx.doi.org/10.1016/j.ejbt.2017.06.006.
  • [50] Rao, T. S., 2003. Temporal variations in an estuarine biofilm: with emphasis on nitrate reduction. Estuar. Coast. Shelf Sci. 58 (1), 67-75, http://dx.doi.org/10.1016/S0272-7714(03)00060-X.
  • [51] Roeselers, G., Loosdrecht, M. C. M., van Muyzer, G., 2008. Phototrophic biofilms and their potential applications. J. Appl. Phycol. 20 (3), 227-235, http://dx.doi.org/10.1007/s10811-007-9223-2.
  • [52] Rossi, F., De Philippis, R., 2015. Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life 5 (2), 1218-1238, http://dx.doi.org/10.3390/life5021218.
  • [53] Russell, B. D., Connell, S. D., Findlay, H. S., Tait, K., Widdicombe, S., Mieszkowska, N., 2013. Ocean acidification and rising temperatures may increase biofilm primary productivity but decrease grazer consumption. Philos. Trans. R. Soc. B Biol. Sci. 368 (1627), 20120438, http://dx.doi.org/10.1098/rstb.2012.0438.
  • [54] Saeed, M. O., Jamaluddin, A. T., Tisan, I. A., Lawrence, D. A., Al-Amri, M. M., Chida, K., 2000. Biofouling in a seawater reverse osmosis plant on the Red Sea coast, Saudi Arabia. Desalination 128 (2), 177-190, http://dx.doi.org/10.1016/S0011-9164(00)00032-1.
  • [55] Salta, M., Wharton, J. A., Blache, Y., Stokes, K. R., Briand, J.-F., 2013. Marine biofilms on artificial surfaces: structure and dynamics. Environ. Microbiol. 15 (11), 2879-2893, http://dx.doi.org/10.1111/1462-2920.12186.
  • [56] Satheesh, S., Ba-akdah, M. A., Al-Sofyani, A. A., 2016. Natural antifouling compound production by microbes associated with marine macroorganisms — a review. Electron. J. Biotechnol. 21, 26-35, http://dx.doi.org/10.1016/j.ejbt.2016.02.002.
  • [57] Satheesh, S., Godwin Wesley, S., 2008. Seasonal variability in the recruitment of macrofouling community in Kudankulam waters, east coast of India. Estuar. Coast. Shelf Sci. 79 (3), 518-524, http://dx.doi.org/10.1016/j.ecss.2008.05.008.
  • [58] Satheesh, S., Wesley, S., 2010. Biofilm development on acrylic coupons during the initial 24 hour period of submersion in a tropical coastal environment. Oceanol. Hydrobiol. Stud. 39 (1), 27-38, http://dx.doi.org/10.2478/v10009-010-0012-x.
  • [59] Satheesh, S., Wesley, S. G., 2011. Influence of submersion season on the development of test panel biofouling communities in a tropical coast. Estuar. Coast. Shelf Sci. 94 (2), 155-163, http://dx.doi.org/10.1016/j.ecss.2011.06.011.
  • [60] Satheesh, S., Wesley, S. G., 2012. Temporal changes of diatoms in marine biofilm developed on acrylic panels submerged in a tropical coast. Ocean Sci. J. 47 (4), 509-517, http://dx.doi.org/10.1007/s12601-012-0046-y.
  • [61] Sawall, Y., Richter, C., Ramette, A., 2012. Effects of eutrophication, seasonality and macrofouling on the diversity of bacterial biofilms in equatorial coral reefs. PLoS ONE 7, e39951, http://dx.doi.org/10.1371/journal.pone.0039951.
  • [62] Siboni, N., Lidor, M., Kramarsky-Winter, E., Kushmaro, A., 2007. Conditioning film and initial biofilm formation on ceramics tiles in the marine environment. FEMS Microbiol. Lett. 274 (1), 24-29, http://dx.doi.org/10.1111/j.1574-6968.2007.00809.x.
  • [63] Sneed, J. M., Sharp, K. H., Ritchie, K. B., Paul, V. J., 2014. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc. R. Soc. B Biol. Sci. 281 (1786), 20133086, http://dx.doi.org/10.1098/rspb.2013.3086.
  • [64] Stoodley, P., Sauer, K., Davies, D. G., Costerton, J. W., 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56 (1), 187-209, http://dx.doi.org/10.1146/annurev.micro.56.012302.160705.
  • [65] Thompson, R. C., Norton, T. A., Hawkins, S. J., 2004. Physical stress and biological control regulate the producer-consumer balance in intertidal biofilms. Ecology 85 (5), 1372-1382, http://dx.doi.org/10.1890/03-0279.
  • [66] Venugopalan, V. K., Paulpandian, A. L., 1989. Methods in hydrobiology. CAS in Marine Biology. Annamalai University Publ., India, 134 pp.
  • [67] Wahl, M., 1989. Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar. Ecol. Prog. Ser. 58, 175-189, http://dx.doi.org/10.3354/meps058175.
  • [68] Wang, C., Bao, W.-Y., Gu, Z.-Q., Li, Y.-F., Liang, X., Ling, Y., Cai, S.-L., Shen, H.-D., Yang, J.-L., 2012. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to natural biofilms. Biofouling 28 (3), 249-256, http://dx.doi.org/10.1080/08927014.2012.671303.
  • [69] Watson, M., Scardino, A., Zalizniak, L., Shimeta, J., 2015. Colonisation and succession of marine biofilm-dwelling ciliates in response to environmental variation. Aquat. Microb. Ecol. 74 (2), 95-105, http://dx.doi.org/10.3354/ame01731.
  • [70] Webster, N. S., Negri, A. P., 2006. Site-specific variation in Antarctic marine biofilms established on artificial surfaces. Environ. Microbiol. 8 (7), 1177-1190, http://dx.doi.org/10.1111/j.1462-2920.2006.01007.x.
  • [71] Wesley, S. G., Satheesh, S., 2009. Temporal variability of nutrient concentration in marine biofilm developed on acrylic panels. J. Exp. Mar. Biol. Ecol. 379 (1), 1-7, http://dx.doi.org/10.1016/j.jembe.2009.08.004.
  • [72] Wetherbee, R., Lind, J. L., Burke, J., Quatrano, R. S., 1998. Mini review: the first kiss: establishment and control of initial adhesion by raphid diatoms. J. Phycol. 34 (1), 9-15, http://dx.doi.org/10.1046/j.1529-8817.1998.340009.x.
  • [73] Whalan, S., Webster, N. S., 2014. Sponge larval settlement cues: the role of microbial biofilms in a warming ocean. Sci. Rep. 4, 4072, http://dx.doi.org/10.1038/srep04072.
  • [74] Wieczorek, S. K., Todd, C. D., 1998. Inhibition and facilitation of settlement of epifaunal marine invertebrate larvae by microbial biofilm cues. Biofouling 12 (1-3), 81-118, http://dx.doi.org/10.1080/08927019809378348.
  • [75] Yang, C., Fang, S., Chen, D., Wang, J., Liu, F., Xia, C., 2016. The possible role of bacterial signal molecules N-acyl homoserine lactones in the formation of diatom-biofilm (Cylindrotheca sp.). Mar. Pollut. Bull. 107 (1), 118-124, http://dx.doi.org/10.1016/j.marpolbul.2016.04.010.
  • [76] Yang, C., Wang, J., Yu, Y., Liu, S., Xia, C., 2015. Seasonal variations in fouling diatom communities on the Yantai coast. Chin. J. Oceanol. Limnol. 33 (2), 439-446, http://dx.doi.org/10.1007/s00343-015-4067-0.
  • [77] Zhang, W. P., Wang, Y., Tian, R. M., Bougouffa, S., Yang, B., Cao, H. L., Zhang, G., Wong, Y. H., Xu, W., Batang, Z., Al-Suwailem, A., Zhang, X. X., Qian, P.-Y., 2014. Species sorting during biofilm assembly by artificial substrates deployed in a cold seep system. Sci. Rep. 4, 6647, http://dx.doi.org/10.1038/srep06647.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30280eea-8d79-45b3-a18c-ebd053a61eb3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.