Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Magnet-Coil Configuration on Energy Recovery from an Electromagnetic Harvester

Warianty tytułu
Języki publikacji
This paper presents a numerical and experimental analysis of a magnetic levitation (maglev) energy harvester. The motion of a magnet in a coil causes electromagnetic induction and energy harvesting. A new model of coupling electrical and mechanical systems depending on the coil position is proposed. The obtained results show that the magnet-coil configuration strongly influences the energy harvesting level. The best position of a magnet oscillation is near the coil’s end. Moreover, the foldover effect can be amplified.
Opis fizyczny
Bibliogr. 10 poz.,rys., tab., wykr.
  • Lublin University of Technology
  • Lublin University of Technology
  • 1. Kecik, K. (2018). Assessment of energy harvesting and vibration mitigation of a pendulum dynamic absorber. Mechanical Systems and Signal Processing, 106: 198–209.
  • 2. Kecik, K., Brzeski, P., and Perlikowski, P. (2017a). Non-linear dynamics and optimization of a harvester–absorber system. International Journal of Structural Stability and Dynamics, 17 (05): 1–15.
  • 3. Kecik, K., Mitura, A., Lenci, S., and Warminski, J. (2017b). Energy harvesting from a magnetic levitation system. International Journal of Non-Linear Mechanics, 94: 200–206.
  • 4. Kecik, K., Mitura, A., Warminski, J., and Lenci, S. (2018). Foldover effect and energy output from a nonlinear pseudo-maglev harvester. AIP Conference Proceeding.
  • 5. Mann, B. and Sims, N. (2010). On the performance and resonant frequency of electromagnetic induction energy harvesters. Journal of Sound and Vibration, 329 (9): 1348–1361.
  • 6. Olaru, R., Gherca, R., and Petrescu, C. (2014). Analysis and design of a vibration energy harvester using permanent magnets, revue roumaine de sciences. Techniques Serie Electrotechnique et Energetique, pages 131–140.
  • 7. Puccinelli, D. and Haenggi, M. (2005). Wireless sensor networks: applications and challenges of ubiquitous sensing. IEEE Circuits and Systems Magazine, 5 (3): 19–31.
  • 8. Renno, J. M., Daqaq, M. F., and Inman, D. J. (2009). On the optimal energy harvesting from a vibration source. Journal of Sound and Vibration, 320 (1-2): 386–405.
  • 9. Sodano, H. A., Inman, D. J., and Park, G. (2004). A review of power harvesting from vibration using piezoelectric materials. The Shock and Vibration Digest, 36 (3): 197–205.
  • 10. Stephen, N. (2006). On energy harvesting from ambient vibration. Journal of Sound and Vibration, 293 (1-2): 409–425.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.