PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Main drying and wetting curves of soils: on measurements, prediction and influence on wave propagation

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Depending on the initial degree of saturation of a soil, different capillary pressure curves occur. If a sample is initially water saturated and then drained (process of drainage) the main drying curve results. On the other hand, if the sample is initially dry and water is supplied until saturation is reached (process of imbibition) the main wetting curve is the consequence. These two curves build a hysteresis loop. If after the first process the other is followed up (possibly a number of times), then inner hysteresis curves arise. The focus of this paper is the investigation of some aspects of the main drying curve (MDC) and the main wetting curve (MWC). Some methods of their measurement are discussed. Because of big differences in the capillary pressure for different degrees of saturation the measurement is laborious and time consuming and often application of more than one method is necessary. Consequently, often only the MDC is measured and the data is used to predict the MWC and inner curves. Exemplarily, one prediction method is shown and subsequently, for one soil type the resulting curves are used to calculate the wave speeds and attenuations of the appearing sound waves. The dependence of these wave features on frequency and saturation for the current example shows, that the hysteresis effect of the capillary pressure curve has only a slight effect on the propagation of sound waves in partially saturated sand.
Rocznik
Strony
5--34
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
autor
  • Technical University of Berlin, Institute for Geotechnical Engineering and Soil Mechanics Germany
Bibliografia
  • 1. http://archives.sensorsmag.com/articles/0505/30/main.shtml.
  • 2. http://beesl.syr.edu/ht 1d-sutud-moist-stor.htm.
  • 3. http://www.soilmeasurement.com/tempe.html.
  • 4. Albers B., On the influence of saturation and frequency on monochromatic plane waves in unsaturated soils, [in:] Coupled site and soil-structure interaction effects with application to seismic risk mitigation, T. Schanz and R. Iankov [Eds.], NATO Science Series, Springer Netherlands, pp. 65–76, 2009.
  • 5. Albers B., Micro-macro transition and linear wave propagation in three-component compacted granular materials, [in:] AIP Conference Proceedings of the Joint IUTAM-ISIMM Symposium on Mathematical Modeling and Physical Instances of Granular Flows, J. Goddard and P. Giovine [Eds.], AIP, 2010.
  • 6. Albers B., Modeling and Numerical Analysis of Wave Propagation in Saturated and Partially Saturated Porous Media, Ver¨offentlichungen des Grundbauinstitutes der Technischen Universit¨at Berlin, Habilitation thesis, Shaker Verlag, Aachen, vol. 48, 2010.
  • 7. Albers B., On a micro-macro transition for a poroelastic three-component model, ZAMM, 90, 12, 929–943, 2010.
  • 8. Albers B., Linear elastic wave propagation in unsaturated sands, silts, loams and clays, Transport in Porous Media, 86, 537–557, 2011.
  • 9. Albers B., Modeling the hysteretic behavior of the capillary pressure in partially saturated porous media – a review, Acta Mech., 225, 2163–2189, 2014.
  • 10. Albrecht B.A., Benson C.H., Beuermann S., Polymer capacitance sensors for measuring soil gas humidity in drier soils, J. Geotechnical Testing, 26, 1, 1–9, 2003.
  • 11. Bear J., Bachmat Y., Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer Academic Publishers, Dordrecht, 1991.
  • 12. Brooks R.H., Corey A.T., Hydraulic properties of porous media, [in:] Hydrology Papers, vol. 3, Colorado State University, Fort Collins, 1964.
  • 13. Buckingham E., Studies on the Movement of Soil Moisture, United States Department of Agriculture, Bureau of Soils Bulletin, vol. 38, U. S. Department of Agriculture, 1907.
  • 14. Bulut R., Total and matric suction measurements with the filter paper method, http://www.foundationperformance.org/pastpresentations/FilterPapSuctMeasDemonstrtn.pdf.
  • 15. Campbell-Clause J.M., Using gypsum blocks to measure soil moisture in vineyards, Farmnotes, 3, 1998.
  • 16. Dane J.H., Hopmans J.W., Water retention and storage, Methods of Soil Analysis, 4, 671–717, 2002.
  • 17. DIN 4220: Pedologic site assessment – Designation, classification and deduction of soil parameters (normative and nominal scaling), DIN Deutsches Institut f¨ur Normung e.V., Beuth Verlag GmbH (draft, in German: Bodenkundliche Standortbeurteilung – Kennzeichnung, Klassifizierung und Ableitung von Bodenkennwerten (normative und nominale Skalierungen), 2005.
  • 18. Enderby J.A., The domain model of hysteresis, Part 1 – independent domains, Trans. Faraday Soc., 51, 835–848, 1955.
  • 19. Everett D.H., A general approach to hysteresis. Part 3 – a formal treatment of the independent domain model of hysteresis, Transactions of the Faraday Society, 50, 1077–1096, 1954.
  • 20. Fredlund D.G., Rahardjo H., Soil Mechanics for Unsaturated Soils, John Wiley & Sons, 1993.
  • 21. Haverkamp R., Reggiani P., Ross P.J., Parlange J.-Y., Soil water hysteresis prediction model based on theory and geometric scaling, [in:] Environmental Mechanics, Water, Mass and Engergy Transfer in the Biosphere, A. W. P.A.C. Raats, D. Smiles [Eds.], American Geophysical Union, pp. 213–246, 2002.
  • 22. Johnson A.I., Morris D.A., Vibratory compaction in the laboratory of granular materials in long columns, [in:] Evaluation of relative density and its role in geotechnical projects involving cohesionless soils: a symposium presented at the 75th annual meeting, ASTM STP 523, American Society for Testing and Materials, 1973.
  • 23. Kelder O., Smeulders D.M.J., Observation of the Biot slow wave in water-saturated Nivelsteiner sandstone, Geophysics, 62, 6, 1794–1796, 1997.
  • 24. Klimentos T., McCann C., Why is the Biot slow compressional wave not observed in real rocks?, Geophysics, 53, 12, 1605–1609, 1988.
  • 25. Kool J.B., Parker J.C., Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties, Water Resources Research, 23, 1, 105–114, 1987.
  • 26. Lewis R.W., Schrefler B.A., The finite element method in the static and dynamic deformation and consolidation of porous media, Wiley, Chichester, 1998.
  • 27. Liakopoulos A.C., Theoretical approach to the solution of the infiltration problem, International Association of Scientific Hydrology, Bulletin, 11, 1, 69–110, 1966.
  • 28. Lins Y., Hydro-mechanical properties of partially saturated sand, PhD Thesis, Schriftenreihe des Lehrstuhls f¨ur Grundbau, Boden- und Felsmechanik, vol. 42, Ruhr-Universit¨at Bochum, 2010.
  • 29. Lu N., Likos W., Unsaturated Soil Mechanics, Wiley, Hoboken, New Jersey, 2004.
  • 30. Mualem Y., A conceptual model of hysteresis, Water Resources Research, 10, 514–520, 1974.
  • 31. Mualem Y., A new model predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12, 513–522, 1976.
  • 32. N´eel L., Th´eories des lois d’aimanation de Lord Rayleigh, I: Les deplacements d’une paroi isolee, Cahiers de Physique, 12, 1, 1–20, 1942.
  • 33. Parker J.C., Lenhard R.J., A model for hysteretic constitutive relations governing multiphase flow, 1. saturation-pressure relations, Water Resources Research, 23, 12, 2187–2196, 1987.
  • 34. Parlange J.-Y., Capillary hysteresis and the relationship between drying and wetting curves, Water Resources Research, 12, 2, 224–228, 1976.
  • 35. Plona T.J., Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies, Appl. Phys. Lett., 36, 4, 259–261, 1980.
  • 36. Poulovassillis A., Hysteresis of pore water in granular porous bodies, Soil Science, 109, 1, 5–12, 1970.
  • 37. Reinson J.R., Fredlund D.G., Wilson G.W., Unsaturated flow in coarse porous media, Can. Geotech. J., 42, 252–262, 2005.
  • 38. Schanz T., Mikulitsch V., Lins Y., Untersuchungen an teilges¨attigten, granularen reibungsmaterialien, [in:] 3. Workshop – Teilges¨attigte B¨oden (Bauhaus-Universit¨at Weimar), pp. 145–159, 2001.
  • 39. Scott P.S., Farquhar G.J., Kouwen N., Hysteretic effects on net infiltration, [in:] Advances in Infiltration, pp. 163–171, 1983.
  • 40. Sheta H., Simulation von Mehrphasenvorg¨angen in por¨osen Medien unter Einbeziehung von Hysterese-Effekten [in German], PhD Thesis, Universit¨at Stuttgart, 1999.
  • 41. Topp G.C., Soil water hysteresis in silt loam and clay loam soils, Water Resources Research, 7, 4, 914–920, 1971.
  • 42. van Genuchten M.T., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898, 1980.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3022c08f-fd75-43e6-87b3-cf68d707c336
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.