PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrostatic Discharge Sensitivity and Resistivity Measurements of Al Nanothermites and Their Fuel and Oxidant Precursors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The sensitivity of nanothermites to electrostatic discharge (ESD) has been noted by many authors. In the present work, nanothermites have been prepared using aluminium fuels with oxide (O-Al), palmitic acid (L-Al) and Viton (V-Al) passivation and CuO, Fe2O3 and MoO3 oxidants, as well as binary oxidant mixtures. Fuel- and oxidant-based ESD sensitivity trends of O-Al ≈ L-Al >> V-Al and MoO3 >> CuO ≈ Fe2O3 were observed with binary oxidants affording intermediate sensitivities. In the majority of cases, with the exception of high proportions of MoO3 oxidant, nanothermites containing V-Al fuel were the least sensitive to ESD at > 0.156 J. Resistivity measurements have been made for the fuels and oxidants and follow the trends V-Al >> O-Al ≈ L-Al and MoO3 >> Fe2O3 > CuO. V-Al resistivity of ca. 1011 Ω·cm exceeds that of the oxidants studied. An ESD sensitivity trend, based on a reduced proportion of spark current carried by the aluminium fuel, is proposed and was consistent with the observed ESD and resistivity data.
Rocznik
Strony
105--119
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Royal Military College of Canada, 11 General Crerar Crescent, K7K 7B4 Kingston, Canada
autor
  • Royal Military College of Canada, 11 General Crerar Crescent, K7K 7B4 Kingston, Canada
autor
  • Royal Military College of Canada, 11 General Crerar Crescent, K7K 7B4 Kingston, Canada
autor
  • Royal Military College of Canada, 11 General Crerar Crescent, K7K 7B4 Kingston, Canada
Bibliografia
  • [1] Fischer, S. H.; Grubelich, M. C. Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals. 24th International Pyrotechnics Seminar, Monterey, CA, USA, July 27-31, 1998.
  • [2] Aumann, C. E.; Skofronick, G. L.; Martin, J. A. Oxidation Behavior of Aluminum Nanopowders. J. Vacuum Sci. Technol. B, 1995, 13: 1178-1183.
  • [3] Puszynski, J. A.; Bichay, M. M.; Swiatkiewicz, J. J. Wet Processing and Loading of Percussion Primers Based on Metastable Nanoenergetic Composites. Patent US 7,670,446 B2, 2010.
  • [4] Ellis, M. Environmentally Acceptable Medium Caliber Ammunition Percussion Primers. US ARDEC Report, SERDP ID WP-1308, 2007.
  • [5] Rossi, C. Al-based Energetic Materials. Vol. 2, Wiley, London - New York, 2015, ISBN: 9781848217171.
  • [6] Rossi, C. Two Decades of Research on Nano-Energetic Materials. Propellants Explos. Pyrotech. 2014, 39: 323-327.
  • [7] Piercey, D. G.; Klapötke, T. M. Nanoscale Aluminum − Metal Oxide (Thermite) Reactions for Application in Energetic Materials. Cent. Eur. J. Energ. Mater. 2010, 7: 115-129.
  • [8] Hirlinger, J.; Bichay, M. Demonstration of Metastable Intermolecular Composites (MIC) on Small Caliber Cartridges and CAD/PAD Percussion Primers. US ARDEC Report ESTCP WP-200205, 2009.
  • [9] Matyáš, R.; Šelešovský, J.; Musil, T. Sensitivity to Friction for Primary Explosives. J. Hazard. Mater. 2012, 213-214: 236-241.
  • [10] Petre, C. F.; Chamberland, D.; Ringuette, T.; Ringuette, S.; Paradis, S.; Stowe, R. Low-Power Laser Ignition of Aluminum/Metal Oxide Nanothermites. Int. J. Energ. Mat. Chem. Propul. 2014, 13: 479-494.
  • [11] Siegert, B.; Comet, M.; Muller, O.; Pourroy, G.; Spitzer, D. Reduced Sensitivity Nanothermites Containing Manganese Oxide Filled Carbon Nanofibers. J. Phys. Chem. C 2010, 114: 19562-19568.
  • [12] Puszynski, J. A.; Bulian, J.; Swiatkiewicz, J. J. Processing and Ignition Characteristics of Aluminium-bismuth Trioxide Nanothermite System. J. Propul. Power 2007, 23: 698-706.
  • [13] Gash, A. E.; Satcher, J. H.; Simpson, R. L.; Clapsaddle, B. J. Nanostructured Energetic Materials with Sol-Gel Methods. Mat. Res. Soc. Symp. Proc. 2004, 800: AA2.2.1-AA2.2.12.
  • [14] Tillotson, T. M.; Gash, A. E.; Simpson, R. L.; Hrubesh, L. W.; Satcher, Jr. J. H.; Poco, J. F. Nanostructured Energetic Materials Using Sol-gel Methodologies. J. Non-Cryst. Sol. 2001, 285: 338-345.
  • [15] Pichot, V.; Comet, M.; Miesch, J.; Spitzer, D. Nanodiamond for Tuning the Properties of Energetic Composites. J. Hazard. Mater. 2015, 300: 194-201.
  • [16] Bach, A.; Gibot, P.; Vidal, L.; Gadiou, R.; Spitzer, D. Modulation of the Reactivity of a WO3/Al Energetic Material with Graphitized Carbon Black as Additive. J. Energ. Mater. 2015, 33: 260-276.
  • [17] Weir, C.; Pantoya, M. L.; Ramachandran, G.; Dallas, T.; Prentice, D.; Daniels, M. Electrostatic Discharge Sensitivity and Electrical Conductivity of Composite Energetic Materials. J. Electrost. 2013, 71: 77-83.
  • [18] Weir, C.; Pantoya, M. L.; Daniels, M. The Role of Aluminum Particle Size in Electrostatic Ignition Sensitivity of Composite Energetic Materials. Combust. Flame 2013, 160: 2279-2281.
  • [19] Kelly, D. G.; Beland, P.; Brousseau, P.; Petre, C. F. Formation of Additive-Containing Nanothermites and Modifications to their Friction Sensitivity. J. Energ. Mater., published online doi: 10.1080/07370652.2016.1193072.
  • [20] Pantoya, M. L.; Granier, J. J. Combustion Behavior of Highly Energetic Thermites: Nano versus Micron Composites. Propellants Explos. Pyrotech. 2005, 30: 53-62.
  • [21] Kelly, D. G.; Beland, P.; Brousseau, P.; Petre, C. F. The Performance Modification of Aluminum Nanothermites Prepared Using Resonant Acoustic Mixing. 42nd International Pyrotechnics Seminar, Grand Junction, CO, USA, July 10-15, 2016.
  • [22] Sun, J.; Pantoya, M. L.; Simon, S. L. Dependence of Size and Size Distribution on Reactivity of Aluminum Nanoparticles in Reactions with Oxygen and MoO3. Thermochim. Acta 2006, 444: 117-127.
  • [23] Petrantoni, M.; Rossi, C.; Conédéra, V.; Bourrier, D.; Alphonse, P.; Tenailleau, C. Synthesis Process of Nanowired Al/CuO Thermite. J. Phys. Chem. Solids 2010, 71: 80-83.
  • [24] Glor, M. Ignition Hazard Due to Static Electricity in Particulate Processes. Powder Tech. 2003, 135-136: 223-233.
  • [25] Meyer, B. K.; Polity, A.; Reppin, D.; Becker, M.; Hering, P.; Klar, P. J.; Sander, Th.; Reindl, C.; Benz, J.; Eickhoff, M.; Heiliger, C.; Heinemann, M.; Bläsing, J.; Krost, A.; Shokovets, S.; Müller, C.; Ronning, C. Binary Copper Oxide 249: 1487-1509.
  • [26] Cai, S.; Jian, T. D.; Jin, R.; Zhang, S.; Fujishima, J. A. Semiconductive Properties and Photoelectrochemistry of Iron Oxide Electrodes − VIII. Photoresponses of Sintered Zn-doped Iron Oxide Electrode. Electrochim. Acta 1991, 36: 1585.
  • [27] Hanna, A. A.; Khilla, M. A. Electrical Properties of the Semiconductor Materials Molybdenum and Tungsten Trioxides. Thermochim. Acta 1983, 65: 311-320.
  • [28] Foley, T.; Pacheco, A.; Malchi, J.; Yetter, R.; Higa, K. Development of Nanothermite Composites with Variable Electrostatic Discharge Ignition Thresholds. Propellants Explos. Pyrotech. 2007, 32: 431-433.
  • [29] Lei, X.; Wang, C.; Yi, Z.; Liang, Y.; Sun, J. Effects of Particle Size on the Electrochemical Properties of Aluminum Powders as Anode Materials for Lithium Ion Batteries. J. Alloy Cmpds. 2007, 429: 311-315.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-301f51c3-a73e-463b-9517-f778018596a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.