PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shunt capacitor placement under n-1 contingency condition: Realization with Mi Power package

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wybór punktu umieszczenia kondensatora bocznikującego w stanach awaryjnych systemu przesyłu energii. Realizacja w oprogramowaniu MiPower
Języki publikacji
EN
Abstrakty
EN
The losses in the power transmission network may increase due to contingency conditions, i.e., contingency analysis is flattering a crucial task for power system scheduling and operation. It is required to forecast the outcome of outages in power system. Contingency may be occurred due to failure of equipment or transmission lines. Single line outage also overloads the other lines, and abrupt voltage drop may cause the outage of other lines. Hence, the contingency analysis plays vital role to handle different system operating conditions. In this paper, n-1 contingency condition is considered to find the impact of shunt capacitor for improvement in voltage profile, where Mi Power package has been used for the conduction of simulation on the considered test network. Voltage Collapse Prediction Index is the method used for finding the optimal placement of shunt capacitor under n-1 contingency. The highest VCPI value indicates the weak bus, therefore, that is the best place for placement of shunt capacitor to improve the voltage profile and reduce the losses. The value of bus voltages, real power losses and real power generation before and after the n-1 transmission line contingency have been examined, where the improvement of voltage profile through optimal location of shunt capacitor has been studied. The usefulness of the shunt capacitor has been verified on 5 bus test system under n-1 contingency condition using MiPower software.
PL
W artykule przestawiono problematykę łagodzenia skutków stanów awaryjnych w systemach przesyłu energii elektrycznej. W przypadku stanów awaryjnych w systemach przesyłowych występują przeciążenia oraz straty mocy w innych częściach systemu. Dlatego bardzo ważna jest analiza awarii które mogą wystąpić podczas eksploatacji systemu przesyłu energii. Często osoby zarządzające systemem przeprowadzają prognozę skutków wyłączenia poszczególnych linii przesyłowych tworzących system przesyłowy. Stan awaryjny w jednej linii wywołuje spadki napięć w innych punktach systemu przesyłowego. W celu łagodzenia skutków awarii, autorzy zaproponowali zastosowanie kondensatora bocznikującego. W celu wyznaczenia najlepszego miejsca podłączenia kondensatora bocznikującego analizowano wskaźnik zapadów napięcia. Obliczenia symulacyjne zostały wykonane w systemie MiPower. Analizowano system złożony z pięciu linii przesyłowych. Przedstawiono i omówiono wybrane wyniki obliczeń symulacyjnych.
Rocznik
Strony
164--171
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Siddhartha Engineering College, Vijayawada-520007, India
  • Lendi Institute of Engineering and Technology, Vizianagaram 535005, India
  • ński, Poznan University of Technology, ul, Piotrowo 3a, 60-965 Poznan, Poland
  • MVGR College of Engineering Vizianagaram, India
  • Ingenium Research Group, University of Castilla-La Mancha, Spain
Bibliografia
  • [1] HEIKO T., ADELA M., CHERVYAKOV A., STÜCKRAD S., RUBBIA C., “Efficiency of superconducting transmission lines: An analysis with respect to the load factor and capacity rating”, Electric Power Systems Research, vol. 141, pp. 381 - 391, 2016.
  • [2] DUTTA S., ROY P. K., NANDI D., “Optimal location of UPFC controller in transmission network using hybrid chemical reaction optimization”, Energy Systems, vol. 64, pp. 194–211, 2015.
  • [3] LO K. L., LUAN W. P., GIVEN M., BRADLEY M., WAN H. B., “ANN based automatic contingency selection for electric power system”, COMPEL, vol. 21, no. 221, pp. 193–207, 2002.
  • [4] BALAMURUGAN K., MUTHUKUMAR K., “Differential evolution algorithm for contingency analysis-based optimal location of FACTS controllers in deregulated electricity market”, Soft Computing, vol. 23, no. 1, pp. 163–179, 2019.
  • [5] AFFONSO C. M., DA SILVA L. C. P., “Potential benefits of implementing load management to improve power system security”, International Journal of Electrical Power and EnergySystems, vol. 36, no. 6, ,704–710, 2010.
  • [6] DASHTI R., GORD E., NAJAFI M., REZA SHAKE H., “An intelligent and cost-effective method for single-phase fault location in conventional distribution systems”, Electrical Engineering, vol. 102, no. 4, pp. 1975 – 1991, 2020.
  • [7] ZHOU M., FENG D., “Parallel Contingency Analysis for Multi-CPU/Core Computing Environment”, IFAC-PapersOnLine, vol. 52, no. 4, pp. 105–110, 2019.
  • [8] ILANGO D. R., “Load flow and transient stability analysis for IEEE 5 bus system using UPFC”, International Journal of Scientific and Technology, vol. 9, no. 4, pp. 1349 – 1352, 2020.
  • [9] JAMNANI J. G., PANDYA M., “Coordination of SVC and TCSC for management of power flow by particle swarm optimization”, Energy Procedia, vol. 156, pp. 321–326, 2019.
  • [10] VENKATESH R., VENKATESWARARAO B., GOUTHAMKUMAR N., “Impact of shunt capacitor on voltage profile improvement at over load conditions using MiPower software”, International Journal of Electronics, vol. 6, vol. 6, pp. 115 – 121, 2017.
  • [11] MAHAPATRA S., SINGH M., “Analysis of symmetrical fault in IEEE 14 bus system for enhancing over current protection scheme”, International Journal of Future Generation Communication and Networking, vol. 9, no. 4, pp. 51–62, 2016.
  • [12] DEVARAPALLI R.; KUMAR SINH, N.; VENKATESWARARAO B.; KNYPIŃSKI Ł.; JAYA NAGA N; MARQUEZ, F. P G., “Allocation of real power generation based on computing over all generation cost: An approach of Salp Swarm Algorithm”, Archives of Electrical. Engineering, vol. 70, no. 2, 337–349 2021.
  • [13] MASOUD FATEMI S., ABEDI M., VAHIDI B., ABEDI S., RASTEGAR H., “A novel and fast voltage estimation scheme for assessment of power system component outages”, COMPEL, vol. 33, no. 4, pp. 1296–1328, 2014.[14]
  • [14] ZIMMERMAN R. D., MURILLO-SANCHEZ C. E., THOMAS R. J., “MATPOWER Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education”, IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 12–19, 2011.
  • [15] YANG J., BAO X., YANG Z., “Load Identification for the More Electric Aircraft Distribution System Based on Intelligent Algorithm”, Aerospace, vol. 9, no. 7, pp. 1 -15, 2022.
  • [16] MUSIRIN I., KHAWA T., RAHMAN A., “Simulation technique for voltage collapse prediction and contingency ranking inpower system”, Student Conference on Research and Development, Shah Alam, Malaysia, pp 188 – 191, 2002.
  • [17] PRADEEP KUMAR S.K.B., BAAMURUGAN G., BUTCHI RAJU Y., “Optimal Infusion and Grading of Combined DGs and Capacitor Banks for Line Loss Minimization and Enhancement of Voltages in Radial Circuit System”, Przegląd Elektrotechniczny, vol. 98, no. 12, pp. 14 – 22, 2021.
  • [18] BITEW AEGGEGN D., OLALEKAN A., GEBRU Y., “Load low and contingency analysis for transmission line outage”, Archives of Electrical Engineering, vol. 69, no. 3, pp. 581 – 549, 2020.
  • [19] KIANI E., DOAGOU-MOJARRAD H., RAZMI H., “Multi-objective optimal power flow considering voltage stability index and emergency demand response program”, Electrical Engineering, vol. 102, no. 4, pp. 2493–2508, 2020.
  • [20] MISHRA S., BRARY. S., “Load Flow Analysis Using MATLAB”,2022 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS), pp. 1-4, 2022, doi: 10.1109/SCEECS54111.2022.9741005.
  • [21] KMAK J., NOWAK W. TARKO R., “Statistical assessment of shock hazard during earth faults in medium voltage substations”, Przegląd Elektrotechniczny, vol 98, no. 10, pp. 99 – 102, 2022, doi: 10.15199/48.2022.10.19.
  • [22] KARBALAEI F., SOLEYMANI H., AFSHARNIA S., “A comparison of voltage collapse proximity indicators”, Conference Proceedings IPEC, 2010, pp. 429–432.
  • [23] AZAD S., AMIRI M. M., AMELI M. T., “Contingency ranking for timely power system security assessment using a new voltage-angle index and based on the PMU data”, Journal of Energy Management and Technology, vol. 4, no. 1, pp. 1 -10, 2020.
  • [24] SINGH P., TIWARI R., SHAH M. K., NIAZI K. R., MEENA N. K., RATRA S., “Voltage stability index and APFC for performance improvement of modern power systems with intense renewable”, The Journal of Engineering, vol. 18, pp. 5187–5192., 2019.
  • [25] MATSUKAWA Y., WATANABE M., WAHAB N. I., OTHMAN M., “Voltage stability index calculation by hybrid state estimationbased on multi-objective optimal phasor measurement unit placement”, Energies, vol. 12, no. 14, 2688, 2019.
  • [26] OUKENNOU A., SANDALI A., “Novel voltage stability index for electric power system monitoring”, International Journal of Electrical and Computer Engineering Systems, vol. 10, no. 1, pp. 1–9, 2019.
  • [27] AIROBOMAN A. E., JAMES P., ARAGA I. A., WAMDEO C. L., OKAKWU I. K., “Contingency analysis on the Nigerian power systems network”, IEEE PES/IAS Power Africa, pp.70–75, 2019.
  • [28] ÁLVAREZ-ROMERO G., CASTRO L. M., RONCERO-SÁNCHEZ P., “Effective sensitivity-based method for N-1 contingency analysis of VSC-based MTDC power grids considering power generation droop speed controls”, International Journal of Electrical Power and Energy Systems, vol. 122, 106175, 2020.
  • [29] IZUMI S., KARAKAWA Y., XIN X., “Analysis of small-signal stability of power systems with photovoltaic generator”, Electrical Engineering, vol. 110, no. 2, pp. 321–331, 2019.
  • [30] IQBAL M. S., SUJATHA B.C., Multiple contingency analysis for optimal placement and estimate the value of SVC for power loss reduction employing genetic algorithm, International Journal of Electrical Engineering and Technology, vol. 10, no. 4, pp. 60 – 69, 2019.
  • [31] ADEBAYO I. G., SUN Y., “A Comparison of Voltage Stability Indices for Critical Node Identification in a Power System”, 2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET), pp. 1-5, 2021, doi: 10.1109/SeFet48154.2021.9375674.
  • [32] S. M. C, “Analysis And Simulation Of Economic Load Dispatch in Power System”, 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), pp. 1-6, 2022, doi: 10.1109/ICAECT54875.2022.9808026.
  • [33] ZAHEB H., DANISH M. S. S., SENJYU T., “A contemporary novel classification of voltage stability indices”, Applied Sciences, vol. 10, no. 5, pp. 1 -15, 2020.
  • [34] KYOMUGISHA R., MURIITHI C. M., NYAKOE G. N., “Performance of Various Voltage Stability Indices in a Stochastic Multiobjective Optimal Power Flow Using Mayfly Algorithm”, Journal of Electrical and Computer Engineering, 7456333, 2022, doi: 10.1155/2022/7456333.
  • [35] AMULYAVALLI K, VENKATESWARA RAO B., GOUTHAM KUMAR N., “MiPower based optimal location and sizing of shunt capacitor with L-index to improve voltage magnitude in IEEE 14 bus system”, International Journal of Pure and Applied Mathematics, vol. 114, no. 7, 2017, pp. 259-269.
  • [36] UPENDRA PRASAD, NIKHIL KUMAR SINHA, BATHINA VENKATESWARA RAO, NARAHARISETTI JAYA NAGA LAKSHMI, RAMESH DEVARAPALLI, “Optimal placement of shunt capacitor with VCPI to improve voltage profile using Mi power”, IOP Conf. Series: Materials Science and Engineering, vol. 981, 042061, 2020,doi:10.1088/1757-899X/981/4/042061
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-301dd081-a6bb-4b32-8957-7bebf33dcfb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.