PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation and beam-theory-based analytical model of cross-laminated timber panels buckling behavior

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the buckling behavior of three-layered cross-laminated timber (CLT) panels, from both the experimental and analytical standpoints. Two different series of specimens are considered: the homogeneous ones, which are entirely made of beech, and the hybrid ones, whose inner layers are made of Corsican pine. The experimental tests aim to evaluate the failure limit loads of the specimens, when loaded by an increasing compression tip force. The analytical formulation is first obtained for a panel with a generic number of layers and after it is specialized for a three-layered panel. Timber layers are modeled as internally constrained planar Timoshenko beams linked together by adhesive layers, which are modeled as a continuous distribution of normal and tangential elastic springs. A closed-form solution of the buckling problem is obtained. The achieved Eulerian critical load of CLT panels depends on two parameters, which account for (1) the interaction between timber layers (due to the glue tangential stiffness) and (2) the rolling shear stiffness of the inner layer. Three different failure criteria are introduced to estimate the limit load. Finally, the analytical limit loads and the experimental ones are compared.
Rocznik
Strony
art. no. e172, 2023
Opis fizyczny
Bibliogr. 65 poz., fot., wykr.
Twórcy
  • Department of Civil, Architecture and Building and Environmental Engineering, University of L’Aquila, Via Giovanni Gronchi 18, 67100 L’Aquila, AQ, Italy
  • Department of Civil, Architecture and Building and Environmental Engineering, University of L’Aquila, Via Giovanni Gronchi 18, 67100 L’Aquila, AQ, Italy
autor
  • Department of Civil, Architecture and Building and Environmental Engineering, University of L’Aquila, Via Giovanni Gronchi 18, 67100 L’Aquila, AQ, Italy
  • Department of Civil, Architecture and Building and Environmental Engineering, University of L’Aquila, Via Giovanni Gronchi 18, 67100 L’Aquila, AQ, Italy
  • Department of Civil, Architecture and Building and Environmental Engineering, University of L’Aquila, Via Giovanni Gronchi 18, 67100 L’Aquila, AQ, Italy
  • Department of Civil, Architecture and Building and Environmental Engineering, University of L’Aquila, Via Giovanni Gronchi 18, 67100 L’Aquila, AQ, Italy
  • Department of Civil, Architecture and Building and Environmental Engineering, University of L’Aquila, Via Giovanni Gronchi 18, 67100 L’Aquila, AQ, Italy
Bibliografia
  • 1. Kessel MH, Schönhoff T, Hörsting P. Zum Nachweis von druck- beanspruchten Bauteilen nach DIN 1052:2004–08, Teil 1. Bauen mit Holz. 2005;107(12):88–96.
  • 2. Kessel MH, Schönhoff T, Hörsting P. Zum Nachweis von druck- beanspruchten Bauteilen nach DIN 1052:2004–08, Teil 2. Bauen mit Holz. 2006;108(1):41–4.
  • 3. Möller G. Zur Traglastermittlung von Druckstäben im Holzbau. Bautechnik. 2007;84(5):329–34.
  • 4. Becker P, Rautenstrauch K. Time-dependent material behavior applied to timber columns under combined loading. Part II: creep- buckling. Holz als Roh- und Werkstoff. 2001;59(6):491–5.
  • 5. Hartnack R, Schober K‐U, Rautenstrauch K. Computer simula- tions on the reliability of timber columns regarding hygrother- mal effects. In: Proceedings of CIB‐W18 meeting 35: paper no. 35‐2‐1, Kyoto, Japan (2002).
  • 6. Blaß HJ. Tragfähigkeit von Druckstäben aus Brettschichtholz unter Berücksichtigung streuender Einflussgrössen. Dissertation, Universität Fridericiana Karlsruhe, Karlsruhe (1987).
  • 7. Blaß HJ. Design of columns. In: Proceedings of the 1991 interna- tional timber engineering conference, vol. 1. London: TRADA; 1991. p. 1.75–1.81.
  • 8. Blaß HJ. Buckling length. In: Timber engineering, STEP 1. Alm- ere, Netherlands: Centrum Hout; 1995. (49)uM,d = u M − uT + u B 2 .
  • 9. Tetmajer L. Die Gesetze der Knickungs‐ und der zusammenge- setzten Druckfestigkeit der technisch wichtigsten Baustoffe. Mate- rialprüfungs‐Anstalt am Schweiz. Zurich: Polytechnikum Zurich; 1896.
  • 10. Larsen HJ, Pedersen SS. Tests with centrally loaded timber col- umns. In: Proceedings of CIB‐W18 meeting 4: paper no. 4‐2‐1. Paris (1975).
  • 11. Buchanan AH. Strength model and design methods for bending and axial load interaction in timber members. Dissertation, Uni- versity of British Columbia, Vancouver (1984).
  • 12. Buchanan AH, Johns KC, Madsen B. Column design methods for timber engineering. Can J Civ Eng. 1985;12(4):731–44.
  • 13. EN 1995 Eurocode 5 2003. Design of timber structures, part 1-1: general-common rules and rules for buildings. CEN/TC 250, European Committee for Standardisation, Brussels.
  • 14. Wei Y, Zhou M, Zhao K, Zhao K, Li G. Stress-strain relationship model of glulam bamboo under axial loading. Adv Compos Lett. 2020. https://doi.org/10.1177/2633366X20958726.
  • 15. Zhou X, Zeng D, Wang Z. Experimental study on mechanical properties of Larch Glulam columns under axial compression. Appl Mech Mater. 2016;847:38–45. https://doi.org/10.4028/www. scientific.net/AMM.847.38.
  • 16. Ehrhart T, Steiger R, Palma P, Gehri E, Frangi A. Glulam columns made of European beech timber: compressive strength and stiffness parallel to the grain, buckling resistance and adaptation of the effective-length method according to Eurocode 5. Mater Struct. 2020. https://doi.org/10.1617/s11527-020-01524-6.
  • 17. Guo Y, Zhou S, Cui J, Huang Z. Effect of knot on stability of glulam column under axial compressive loading. J Civ Archit Environ Eng. 2017;39:44–9. https://doi.org/10.11835/j.issn.1674- 4764.2017.03.006.
  • 18. Zhang J, He M, Li Z. Compressive behavior of glulam columns with initial cracks under eccentric loads. Inte J Adv Struct Eng. 2018;10:1–9. https://doi.org/10.1007/s40091-018-0181-5.
  • 19. Theiler M, Frangi A, Steiger R. Strain-based calculation model for centrically and eccentrically loaded timber columns. Eng Struct. 2013;56:1103–16. https://doi.org/10.1016/j.engstruct.2013.06. 032.
  • 20. Glos P. Zur Bestimmung des Festigkeitsverhaltens von Brettschichtholz bei Druckbeanspruchung aus Werkstoff‐ und Einwirkungskenngrössen, Dissertation, TU München. Munich (1978).
  • 21. Frangi A, Steiger R, Theiler M.. Design of timber members sub- jected to axial compression or combined axial compression and bending based on 2nd order theory. In: Conference: meeting 48 of the international network on timber engineering research INTER, Sibenik, Croatia, vol 48; 2015.
  • 22. Brandner R, Flatscher G, Ringhofer A, Schickhofer G, Thiel A. Cross laminated timber (CLT): overview and development. Eur J Wood Wood Products. 2016. https:// doi. org/ 10. 1007/ s00107-015-0999-5.
  • 23. Jeleč M, Varevac D, Rajčić V. Cross-laminated timber (CLT)—a state of the art report. GRAĐEVINAR. 2018;70(2):75–95. https:// doi.org/10.14256/JCE.2071.2017.
  • 24. Van De Kuilen JWG, Ceccotti A, Xia Z, He M. Very tall wooden buildings with cross laminated timber. Procedia Eng. 2011;14:1621–8. https://doi.org/10.1016/j.proeng.2011.07.204. (ISSN 1877-7058).
  • 25. Pang S-J, Jeong GY. Effects of combinations of lamina grade and thickness, and span-to-depth ratios on bending proper- ties of cross-laminated timber (CLT) floor. Constr Build Mater. 2019;222:142–51.
  • 26. Wang F, Wang X, Yang S, Jiang G, Que Z, Zhou H. Effect of different laminate thickness on mechanical properties ofcross- laminated timber made from Chinese fir. Sci Silvae Sin. 2020;56:168–75.
  • 27. Li Q, Wang Z, Liang Z, Li L, Gong M, Zhou J. Shear properties of hybrid CLT fabricated with lumber and OSB. Constr Build Mater. 2020;261: 120504.
  • 28. Wang Z, Fu H, Gong M, Luo J, Dong W, Wang T, Chui YH. Pla- nar shear and bending properties of hybrid CLT fabricatedwith lumber and LVL. Constr Build Mater. 2017;151:172–7.
  • 29. Gong Y, Ye Q, Wu G, Ren H, Guan C. Effect of size on compres- sive strength parallel to the grain of cross-laminated timber made with domestic larch. Chin J Wood Sci Technol. 2020;35:42–6.
  • 30. Gong Y, Ye Q, Wu G, Ren H, Guan C. Prediction of the compres- sive strength of cross-laminated timber (CLT) made bydomestic Larix Kaempferi. J Northwest For Univ. 2020;35:234–7.
  • 31. Rahman M, Ashraf M, Ghabraie K, Subhani M. Evaluating Timoshenko method for analyzing CLT under Out-of-plane load- ing. Buildings. 2020. https://doi.org/10.3390/buildings10100184.
  • 32. Wei P, Wang B, Li H, Wang L, Peng Si, Zhang L. A compara- tive study of compression behaviors of cross-laminated tim- ber and glued-laminated timber columns. Constr Build Mater. 2019;222:86–95. https://doi.org/10.1016/j.conbuildmat.2019.06. 139.
  • 33. Zirui H, Dongsheng H, Chui YH, Shen Y, Daneshvar H, Sheng B, Chen Z. Modeling of cross-laminated timber (CLT) panels loaded with combined out-of-plane bending and compression. Eng Struct. 2022. https://doi.org/10.1016/j.engstruct.2021.113335.
  • 34. Ye Q, Gong Y, Ren H, Guan C, Wu G, Chen X. Analysis and calculation of stability coefficients of cross-laminated timber axial compression member. Polymers (Basel). 2021;13(23):4267. https://doi.org/10.3390/polym13234267.
  • 35. Yang Z, Shaoyu Z, Jie Y, Liu A, Jiyang F. Thermomechanical in-plane dynamic instability of asymmetric restrained function- ally graded graphene reinforced composite arches via machine learning-based models. Compos Struct. 2023;308:116709.
  • 36. Yang Z, Liu A, Lai SK, Safaei B, Lv J, Yonghui H, Fu J. Ther- mally induced instability on asymmetric buckling analysis of pinned-fixed FG-GPLRC arches. Eng Struct. 2022;250: 113243.
  • 37. Yang Z, Helong W, Yang J, Liu A, Babak S, Lv J, Fu J. Non- linear forced vibration and dynamic buckling of FG graphene- reinforced porous arches under impulsive loading. Thin-Walled Struct. 2022;1812022: 110059.
  • 38. Yang Z, Liu A, Yang J, Lai SK, Lv J, Fu J. Analytical prediction for nonlinear buckling of elastically supported FG-GPLRC arches under a central point load. Materials (Basel). 2021;14(8):2026. https:// doi. org/ 10. 3390/ ma140 82026. (PMID: 33920651; PMCID: PMC8073894).
  • 39. Pina JC, Flores EIS, Saavedra K. Numerical study on the elastic buckling of cross-laminated timber walls subject to compression. Constr Build Mater. 2019;199:82–91. https://doi.org/10.1016/j. conbuildmat.2018.12.013. (ISSN 0950-0618).
  • 40. Blass HJ, Fellmoser P. Influence of rolling shear modulus on strength and stiffness of structural bonded timber elements. CIB- W18 meet., Scotland. (2004).
  • 41. Sandoli A, Calderoni B. The rolling shear influence on the out-of- plane behavior of CLT panels: a comparative analysis. Buildings. 2020;10:42. https://doi.org/10.3390/buildings10030042.
  • 42. Yusoh AS, Tahir PM, Uyup MKA, Lee SH, Husain H, Khaidzir M. Effect of wood species, clamping pressure and glue spread rate on the bonding properties of cross-laminated timber (CLT) manufactured from tropical hardwoods. Constr Build Mater. 2020. https://doi.org/10.1016/j.conbuildmat.2020.121721.
  • 43. Azambuja RR, DeVallance D, McNeel J. Evaluation of low-grade Yellow-Poplar (Liriodendron tulipifera) as raw material for cross- laminated timber panel production. For Products J. 2022;72:1–10. https://doi.org/10.1307/FPJ-D-21-00050.
  • 44. Sikora KS, McPolin DO, Harte AM. Effects of thickness of cross-laminated timber (CLT) panels made from Sitka spruce on mechanical performance in bending and shear. Constr Build Mater. 2016;116:141–50.
  • 45. Adnan NA, Tahir PM, Husain H, Lee SH, Khairun Anwar Uyup M, Arip MNM, Ashaari Z. Effect of ACQ treatment on surface quality and bonding performance of four Malaysian hardwoods and cross laminated timber (CLT). Eur J Wood Wood Products. 2021;79:285–99.
  • 46. Musah M, Wang X, Dickinson Y, Robert R, Rudnicki M, Xie X. Durability of the adhesive bond in cross-laminated northern hardwoods and softwoods. Constr Build Mater. 2021. https://doi. org/10.1016/j.conbuildmat.2021.124267.
  • 47. Aicher S, Hirsch M, Christian Z. Hybrid cross-laminated tim- ber plates with beech wood cross-layers. Constr Build Mater. 2016;124:1007–18. https://doi.org/10.1016/j.conbuildmat.2016. 08.051.
  • 48. Franke S. Mechanical properties of beech CLT. In: WCTE 2016— World conference on timber engineering; 2016.
  • 49. Crovella P, Kurzinski S. Predicting the strength and serviceability performance of cross-laminated timber (CLT) panels fabricated with high-density hardwood. In: WCTE 2020—World conference on timber engineering; 2021.
  • 50. Sciomenta M, Spera L, Bedon C, Rinaldi V, Nocetti M, Brunetti M, Fragiacomo M, Romagnoli M. Mechanical characterization of novel homogeneous beech and hybrid Beech-Corsican Pine thin cross-laminated timber panels. Constr Build Mater. 2021. https:// doi.org/10.1016/j.conbuildmat.2020.121589.
  • 51. Romagnoli M, Fragiacomo M, Brunori A, Follesa M, Scarascia Mugnozza G. Solid wood and wood based composites: the chal- lenge of sustainability looking for a short and smart supply chain. Lect Notes Civ Eng. 2019;24:783–807. https://doi.org/10.1007/ 978-3-030-03676-8_31.
  • 52. Concu G, De Nicolo B, Fragiacomo M, Trulli N, Valdes M. Grad- ing of maritime pine from Sardinia (Italy) for use in cross-lami- nated timber. Proc Inst Civ Eng Constr Mater. 2018;171(1):11–21. https://doi.org/10.1680/jcoma.16.00043.
  • 53. Fragiacomo M, Riu R, Scotti R. Can structural timber foster short procurement chains within Mediterranean Forests? A research case in Sardinia. South-East Eur For. 2015;6(1):107–17. https:// doi.org/10.15177/seefor.15-09.
  • 54. Aicher S, Christian Z, Dill-Langer G. Hardwood glulams—emerg- ing timber products of superior mechanical properties. 2014. https://doi.org/10.1314/2.1.5170.1120.
  • 55. Kovryga A, Peter S, van de Kuilen JWG. Mechanical properties and their interrelationships for medium-density European hard- woods, focusing on ash and beech. Wood Mater Sci Eng. 2019. https://doi.org/10.1080/17480272.2019.1596158.
  • 56. Chirivì S, Ibell T, Contento A, Di Egidio A. Linear static behav- ior of curved beams coupled with strings representing also fiber- reinforced masonry arches. Adv Struct Eng. 2016;19(1):53–64.
  • 57. Simoneschi G, Di Egidio A, de Leo AM, Contento A. On the use of reinforcing layers to improve the static behaviour of arches or shells with single curvature. Adv Struct Eng. 2016;19(8):1302–12.
  • 58. Perret O, Douthe C, Lebée A, Sab K. A shear strength criterion for the buckling analysis of CLT walls. Eng Struct. 2020. https:// doi.org/10.1016/j.engstruct.2020.110344.
  • 59. Sciomenta M, Di Egidio A, Bedon C, Fragiacomo M. Linear model to describe the working of a three layers CLT strip slab: experimental and numerical validation. Adv Struct Eng. 2021. https://doi.org/10.1177/13694332211020403.
  • 60. Aicher S, Christian Z, Hirsch M. Rolling shear modulus and strength of beech wood laminations. Holzforschung. 2016;70(8):773–81. https://doi.org/10.1515/hf-2015-0229.
  • 61. Samara Jadi Cruz de O, Ophelia B, Arrigoni M, Christian J. Plywood Experimental Investigation and Modeling Approach for Static and Dynamic Structural Applications. In: Andreas Ö, Holm A (eds). Improved Performance of Materials : Design and Experimental Approaches, vol. 72, Springer, pp.119–141, 2018, Advanced Structured Materials book series, 978-3-319-59589-4. https://doi.org/10.1007/978-3-319-59590-0_11.
  • 62. Bogensperger T, Silly G, Schickhofer G. Comparison of methods of approximate verification procedures for cross laminated timber. Research report in Brandner R, et al., editor. Properties, testing and design of cross laminated timber. A state-of-the-art report by COST Action FP1402/WG 2. Aachen: Shaker Verlag. 2018.
  • 63. Szalai J. Complete generalization of the Ayrton–Perry formula for beam-column buckling problems. Eng Struct. 2017;153:205–23. https://doi.org/10.1016/j.engstruct.2017.10.031.
  • 64. Ehrhart T, Brandner R. Rolling shear: test configurations and properties of some European soft- and hardwood species. Eng Struct. 2018;172:554–72. https:// doi. org/ 10. 1016/j. engst ruct. 2018.05.118.
  • 65. Clauß S, Joscak M, Niemz P. Thermal stability of glued wood joints measured by shear tests. Eur J Wood Wood Products. 2011;69:101–11. https://doi.org/10.1007/s00107-010-0411-4.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-301d938c-ff0b-49ec-8bbe-0770923490a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.