PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The pull-off test of different materials using electroadhesive pads

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Badanie siły zrywu matriałów używanych do prdukcji elektroadhezyjnych elementów
Języki publikacji
EN
Abstrakty
EN
The aim of the article was to investigate the phenomenon of electroadhesion in terms of the value of pull-off force for various materials. Application possibilities of electroadhesion, which is widely used in industry, are presented. A unique measuring and power-supplying system was designed and built. A dynamometer was used to test the pull-off force. The test was conducted for three materials: cellulose, silicone-modified cellulose and polyester. The measurements were presented on histograms, taking into account the average force used to pull off a given material.
PL
Celem artykułu było zbadanie zjawiska elektroadhezji pod kątem wartości siły zrywu dla różnych materiałów. Przedstawiono możliwości zastosowania elektroadhezji, która jest szeroko stosowana w przemyśle. Zaprojektowano i zbudowano unikalny system pomiarowy i zasilający. Do badania siły zrywu użyto dynamometru. Badania przeprowadzono dla trzech materiałów: celulozy, celulozy modyfikowanej silikonem oraz poliestru. Pomiary zostały przedstawione na histogramach z uwzględnieniem średniej siły odciągania danego materiału.
Rocznik
Strony
41--44
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
  • Politechnika Opolska, Instytut Elektroenergetyki i Energii Odnawialnej, ul. Prószkowska 76 45- 758 Opole
autor
  • Politechnika Opolska, Instytut Elektroenergetyki i Energii Odnawialnej, ul. Prószkowska 76 45-758 Opole
  • Politechnika Opolska, Instytut Elektroenergetyki i Energii Odnawialnej, ul. Prószkowska 76 45-758 Opole
Bibliografia
  • [1] Vankov, P. Huie, H. Blumenkranz, D. Palanker, “Electroadhesive forceps for tissue manipulation”, Conference Ophthalmic Technologies XIV, 5314 (2004), pp. 270-275
  • [2] J. Berengueres, M. Urago, S. Saito, K. Tadakuma, H. Meguro, “Gecko inspired electrostatic chuck,” 2006 IEEE International Conference on Robotics and Biomimetics, ROBIO 2006, (2006), pp. 1018-1023
  • [3] Cao, X.Sun, Y. Fang, Q. Qin, A. Yu, X. Feng, “Theoretical model and design of electroadhesive pad with interdigitated electrodes,” Materials and Design, No. 89 (2016), pp. 485-491
  • [4] Guo j., J.et al., 2016. “Geometric optimisation of electroadhesive actuators based on 3D electrostatic simulation and its experimental verification”. IFAC-PapersOnLine, No. 49(21), pp. 309-315.
  • [5] Guo J., M. Tailor, T. Bamber, M. Chamberlain, L. Justham, and M. Jackson, “Investigation of relationship between interfacial electroadhesive force and surface texture,” J. Phys. D. Appl. Phys., Vol. 49, No. 3, , 2016
  • [6] Saito, S.; Soda, F.; Dhelika, R.; Takahashi, K.; Takarada, W.; Kikutani, T. Compliant electrostatic chuck based on hairy microstructure. Smart Mater. Struct. 2013, 22, 015019.
  • [7] Dhelika, R.; Sawai, K.; Takahashi, K.; Takarada, W.; Kikutani, T.; Saito, S. Electrostatic chuck consisting of polymeric electrostatic inductive fibers for handling of objects with rough surfaces. Smart Mater. Struct. 2013, 22
  • [8] Guo J., M. Tailor, T. Bamber, M. Chamberlain, L. Justham, M. Jackson, “Investigation of relationship between interfacial The Sq between the attracted material and the electroadhesive pad will also be investigated”, (2016)
  • [9] Guo, J., Xiang, C., Helps, T., Taghavi, M., & Rossiter, J. (2018, April). Electroactive textile actuators for wearable and soft robots. At 2018 IEEE International Conference on Soft Robotics (RoboSoft) (pp. 339-343). IEEE.
  • [10] Xiang, C., Guo, J., & Rossiter, J. (2018, December). ContinuumEA: a soft continuum electroadhesive manipulator. At 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 2473-2478). IEEE.
  • [11] Guo, J., Bamber, T., Zhao, Y., Chamberlain, M., Justham, L., & Jackson, M. (2016). Toward adaptive and intelligent electroadhesives for robotic material handling. IEEE Robotics and Automation Letters, 2(2), pp. 538-545.
  • [12] Yamamoto, A.; Nakashima, T.; Higuchi, T. Wall Climbing Mechanisms Using Electrostatic Attraction Generated by Flexible Electrodes. In: Proceedings of the International Symposium on Micro-Nano Mechatronics and Human Science 2007, Nagoya, Japan, No. 11–14 November 2007; pp. 389– 394.
  • [13] Prahlad, H.; Pelrine, R.; Stanford, S.; Marlow, J.; Kornbluh, R. Electroadhesive Robots-Wall Climbing Robots Enabled by A Novel, Robust, and Electrically Controllable Adhesion Technology. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, No. 19–23 May 2008; pp. 3028–3033.
  • [14] Pawashe, C.; Floyd, S.; Sitti, M. Multiple magnetic microrobot control using electrostatic anchoring. Appl. Phys. Lett. 2009, No. 94, 164108
  • [15] M. Graule, P. Chirarattananon, S. Fuller, N. Jafferis, M. Spenko, R. Kornbluh, R. Wood, “Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion, Science”, 352 (2014)
  • [16] Wang, H.; Yamamoto, A.; Higuchi, T. Electrostatic-Motor- Driven Electroadhesive Robot. In: Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 914– 919.
  • [17] Liu, R.; Chen, R.; Shen, H.; Zhang, R. Wall climbing robot using electrostatic adhesion force generated by flexible interdigital electrodes. In: J. Adv. Rob. Syst. 2013, No. 10, pp. 1–9
  • [18] Wang, H.; Yamamoto, A. A Thin Electroadhesive Inchworm Climbing Robot Driven by An Electrostatic Film Actuator for Inspection in A Narrow Gap. In: Proceedings of the 2013 IEEE International Symposium on Safety, Security and Rescue Robotics, Linkoping, Sweden, 21–26 October 2013; pp. 1–6.
  • [19] Koh, K.H.; Kuppan Chetty, R.M.; Ponnambalam, S.G. Modeling and Simulation of Electrostatic Adhesion for Wall Climbing Robot. In: Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Phuket, Thailand, 7– 11 December 2011; pp. 2031–2036.
  • [20] Varsanik, J.S.; Bernstein, J.J. Voltage-assisted polymer wafer bonding. J. Micromech. Microeng. (2012)
  • [21] Di Lillo, L.; Raither, W.; Bergamini, A.; Zundel, M.; Ermanni, P. Tuning the mechanical behaviour of structural elements by electric fields. Appl. Phys. Lett. 2013, p. 102
  • [22] Ruffatto, D.; Shah, J.; Spenko, M. Optimization and Experimental Validation of Electrostatic Adhesive Geometry. In: Proceedings of the 2013 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2013; pp. 1–8.
  • [23] Ruffatto III, D.; Shah, J.; Spenko, M. Increasing the adhesion force of electrostatic adhesives using optimized electrode geometry and a novel manufacturing process. J. Electrostat. 2014, No. 72, pp. 147–155.
  • [24] Krahn, J.; Menon, C. Electro-Dry-Adhesion. Langmuir 2012, No. 28, pp. 5438–5443.
  • [25] Ruffatto, D.; Parness, A.; Spenko, M. Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive. J. R. Soc. Interface 2014, No. 11,
  • [26] Kalus W., Nagi Ł., Kozioł M., “Laboratory tests of the influence of the shape of electroadhesive pads on the value of the attraction force” 20th International Scientific Conference on Electric Power Engineering (EPE), May 2019 .
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-301d7629-a7e6-4cfc-9a48-581305540208
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.