PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of microbubbles on coarse particle anionic flotation: analysis and optimization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since the grinding and chemical reagents required for flotation are expensive, coarse particle flotation reduces grinding costs and makes the subsequent process more accessible and cheaper. Recent studies suggest that the flotation of coarse particles using microbubbles has some advantages. However, a thorough analysis of the effectiveness of various flotation parameters and the impact of their interactions on the recovery of coarse particles in the presence and absence of microbubbles has yet to be fully understood. In the current study, the two-level factorial and Box-Behnken experimental designs were performed to characterize, assess, and optimize the implications of seven numerical (sodium oleate, collector; calcium oxide, activator; MIBC, frother; impeller speed; froth depth; pulp concentration; fine particles) and one categorical (microbubbles) independent parameters on the coarse quartz particles. Characterization revealed that froth depth did not significantly affect the flotation recovery of coarse particles in the mechanical laboratory cell. The effects of the variables in the presence of microbubbles revealed that sodium oleate and impeller speed significantly impacted recovery, followed by calcium oxide and fine particles, both of which had a medium influence, and MIBC and pulp concentration, which had a minimal impact. The recovery of coarse particles increased by 92.714% when microbubbles were used, compared to the estimated maximum recovery under ideal conditions of 62.258% without them. From this, it can be concluded that a high coarse particle flotation recovery is possible by optimizing the hydrodynamic conditions and the chemical environment using microbubbles.
Rocznik
Strony
art. no. 172298
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
  • Industrial Engineering Department, Sivas Cumhuriyet University, 58140 Sivas, Türkiye
  • Department of Mining Engineering, Faculty of Engineering Sciences, Omdurman Islamic University, P.O. BOX Khartoum 10257, Omdurman 382, Sudan
autor
  • Industrial Engineering Department, Sivas Cumhuriyet University, 58140 Sivas, Türkiye
Bibliografia
  • ATA, S., JAMESON, G.J., 2013. Recovery of coarse particles in the froth phase–A case study. Miner. Eng., 45, 121–127.
  • CAO, S., YIN, W., YANG, B., ZHU, Z., SUN, H., SHENG, Q., CHEN, K., 2022. Insights into the influence of temperature on the adsorption behavior of sodium oleate and its response to flotation of quartz. Int. J. Min. Sci. Technol., 32, 399–409.
  • CARLOS DE F. GONTIJO, D. FORNASIERO, J. RALSTON, 2007. The limits of fine and coarse particle flotation. Canad. J. Chem. Eng., 85(5), 739-747.
  • CHO, Y.S., LASKOWSKI, J.S., 2002. Effect of flotation frothers on bubble size and foam stability, Int. J. Miner. Process., 64, 69-80.
  • DARABI, H., KOLEINI, S.M.J., DEGLON, D., REZAI, B., ABDOLLAHY, M., 2019. Investigation of bubble-particle interactions in a mechanical flotation cell, part 1: Collision frequencies and efficiencies. Miner. Eng., 134, 54–64.
  • DUFFY, K.-A., RUNGE, K., TABOSA, E., N.D. 2013. Strategies for increasing coarse particle flotation in conventional flotation cells, Proceedings Flotation, Cape Town, South Africa.
  • ELVERS, B., 1991. Ullmann’s encyclopedia of industrial chemistry. Verlag Chemie Hoboken, NJ.
  • FAN, G., WANG, L., CAO, Y., LI, C., 2020. Collecting agent–mineral interactions in the reverse flotation of iron ore: A brief review. Minerals, 10, 681.
  • FARROKHPAY, S., AMETOV, I., GRANO, S., 2011. Improving the recovery of low grade coarse composite particles in porphyry copper ores, Advanced Powder Technology., 22, 464–470.
  • FARROKHPAY, S., FILIPPOV, L., FORNASIERO, D., 2021. Flotation of fine particles: A review. Mineral Processing and Extractive Metallurgy Review, 42, 473–483.
  • FARROKHPAY, S., FILIPPOVA, I., FILIPPOV, L., PICARRA, A., RULYOV, N., FORNASIERO, D., 2020. Flotation of fine particles in the presence of combined microbubbles and conventional bubbles. Miner. Eng., 155, 106439.
  • FARROKHPAY, S., FORNASIERO, D., 2017. Flotation of coarse composite particles: Effect of mineral liberation and phase distribution. Advanced Powder Technology, 28, 1849–1854.
  • FOSU, S., AWATEY, B., SKINNER, W., ZANIN, M., 2015. Flotation of coarse composite particles in mechanical cell vs. the fluidised-bed separator (The HydroFloatTM). Miner. Eng., 77, 137–149.
  • GIRGIN, E.H., DO, S., GOMEZ, C.O., FINCH, J.A., 2006. Bubble size as a function of impeller speed in a self-aeration laboratory flotation cell. Miner. Eng., 19, 201–203.
  • GUPTA, A.K., BANERJEE, P.K., MISHRA, A., 2007. Effect of frothers on foamability, foam stability, and bubble size. Coal Preparation, 27, 107–125.
  • HASSANZADEH, A., SAFARI, M., HOANG, D.H., KHOSHDAST, H., ALBIJANIC, B., KOWALCZUK, P.B., 2022. Technological assessments on recent developments in fine and coarse particle flotation systems. Miner. Eng., 180, 107509.
  • JAMESON, G.J., 2010. Advances in fine and coarse particle flotation, in: Canadian Metallurgical Quarterly. Maney Publishing, 328–330.
  • KROMAH, V., POWOE, S.B., KHOSRAVI, R., NEISIANI, A.A., CHELGANI, S.C., 2022. Coarse particle separation by fluidized-bed flotation: A comprehensive review. Powder Technol., 409, 117831.
  • LI, Y., WU, F., XIA, W., MAO, Y., PENG, Y., XIE, G., 2020. The bridging action of microbubbles in particle-bubble adhesion. Powder Technol., 375, 271–274.
  • MAURICE, C.F., KENNETH, N., 2003. Principle of Mineral Processing. Society of Mining, Metallurgy, and Exploration. Inc.(SME), Georgia, 245–299.
  • NAZARI, S., CHEHREH CHELGANI, S., SHAFAEI, S.Z., SHAHBAZI, B., MATIN, S.S., GHARABAGHI, M., 2019. Flotation of coarse particles by hydrodynamic cavitation generated in the presence of conventional reagents. Sep. Purif. Technol., 220, 61–68.
  • NAZARI, S., HASSANZADEH, A., 2020. The effect of reagent type on generating bulk sub-micron (nano) bubbles and flotation kinetics of coarse-sized quartz particles. Powder Technol., 374, 160–171.
  • NAZARI, S., HASSANZADEH, A., HE, Y., KHOSHDAST, H., KOWALCZUK, P.B., 2022. Recent Developments in Generation, Detection and Application of Nanobubbles in Flotation. Minerals. 12(4), 462.
  • NAZARI, S., SHAFAEI, S.Z., GHARABAGHI, M., AHMADI, R., SHAHBAZI, B., 2018. Effect of frother type and operational parameters on nano bubble flotation of quartz coarse particles. Journal of Mining & Environment, 9, 539–546.
  • RAHMAN, R.M., ATA, S., JAMESON, G.J., 2012. The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp. Int. J. Miner. Process., 106–109, 70–77.
  • RULYOV, N., NESSIPBAY, Т., DULATBEK, T., LARISSA, S., ZHAMIKHAN, K., 2018. Effect of microbubbles as flotation carriers on fine sulphide ore beneficiation. Mineral Processing and Extractive Metallurgy, 127, 133–139.
  • RULYOV, N.N., SADOVSKIY, D.Y., RULYOVA, N.A., FILIPPOV, L.O., 2021. Column flotation of fine glass beads enhanced by their prior heteroaggregation with microbubbles. Colloids Surf. A.: Physicochem. Eng. Asp., 617, 126398.
  • SHAHBAZI, B., REZAI, B., KOLEINI, S.M.J., 2009. The effect of hydrodynamic parameters on probability of bubble–particle collision and attachment. Miner. Eng., 22, 57–63.
  • SOBHY, A., WU, Z., TAO, D., 2021. Statistical analysis and optimization of reverse anionic hematite flotation integrated with nanobubbles. Miner. Eng., 163, 106799 .
  • TAO, D., 2005. Role of Bubble Size in Flotation of Coarse and Fine Particles - A Review. Sep Sci Technol. 39, 741-760.
  • TUSSUPBAYEV, N.K., RULYOV, N.N., KRAVTCHENCO, O. V, 2016. Microbubble augmented flotation of ultrafine chalcopyrite from quartz mixtures. Mineral Processing and Extractive Metallurgy, 125, 5–9.
  • VIEIRA, A.M., PERES, A.E.C., 2007. The effect of amine type, pH, and size range in the flotation of quartz. Miner. Eng., 20, 1008–1013.
  • WANG, D., LIU, Q., 2021. Hydrodynamics of froth flotation and its effects on fine and ultrafine mineral particle flotation: A literature review. Miner. Eng., 173, 107220.
  • WIESE, J.G., HARRIS, P.J., BRADSHAW, D.J., 2010. The effect of increased frother dosage on froth stability at high depressant dosages, Miner. Eng., 23, 1010–1017.
  • XU, D., AMETOV, I., GRANO, S.R., 2011. Detachment of coarse particles from oscillating bubbles—The effect of particle contact angle, shape and medium viscosity. Int. J. Miner. Process., 101, 50–57.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30154b7c-1c15-4566-a604-6fa4112eeb84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.