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Abstract

Detecting genetic association models between single nucleotide polymorphisms (SNPs)
in various disease-related genes can help to understand susceptibility to disease. Statisti-
cal tools have been widely used to detect significant genetic association models, according
to their related statistical values, including odds ratio (OR), chi-square test (χ2), p-value,
etc. However, the high number of computations entailed in such operations may limit the
capacity of such statistical tools to detect high-order genetic associations. In this study,
we propose lsGA algorithm, a genetic algorithm based on local search method, to de-
tect significant genetic association models amongst large numbers of SNP combinations.
We used two disease models to simulate the large data sets considering the minor allele
frequency (MAF), number of SNPs, and number of samples. The three-order epistasis
models were evaluated by chi-square test (χ2) to evaluate the significance (P-value <
0.05). Analysis results showed that lsGA provided higher chi-square test values than that
of GA. Simple linear regression indicated that lsGA provides a significant advantage over
GA, providing the highest β values and significant p-value.
Keywords: Genetic algorithms, identifying susceptibility genes, local search algorithm

1 Introduction

Single nucleotide polymorphisms (SNPs) are im-
portant biomarkers in genomes [1], and gene ex-
pression may be influenced by the SNP alone or
by interaction between SNPs [2]. Thus, improved
understanding of associations between SNPs con-
tributes to the analysis of diseases and cancers [3-5].
Genetic associations indicate that the effect of any
single genetic variation (e.g., SNPs) will likely be
dependent on other genetic variations (interaction
between SNPs) [6]. Genetic association studies fo-
cus on which SNP combinations may be associated

with high risk in genes related to diseases and can-
cers. Thus, epistasis identification can be regarded
as a feature selection problem, and genetic associa-
tion detection remains a challenge in bioinformatics
[7].

Genetic associations can be identified by iden-
tifying significant differences between pathological
(case) and normal (control) state. Many statisti-
cal methods have been proposed to identify signif-
icant genetic associations, such as PLINK [8] and
BOOST [9]. However, these methods only iden-
tify two-order genetic associations. Identification of
high order genetic associations is a NP-hard prob-
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lem, especially for high-dimensional SNP combi-
nations and large SNPs [10]. Traditional statistical
methods, e.g., chi-square test (χ2), are suitable for
computationally intensive operations. Thus, evo-
lutionary computations have been applied to im-
prove statistical methods for identifying significant
genetic associations. Particle swarm optimization
(PSO) has been applied to identify significant ge-
netic associations for facial emotion perception [11]
and hypertension [12]. Genetic algorithm (GA)
has been successfully used to identify significant
genetic associations for chronic dialysis [13] and
breast cancer [14]. These previous studies showed
that the limitations imposed by large statistical eval-
uations can be overcome by evolutionary compu-
tation. Moreover, significant genetic associations
with SNP combinations show that a marginal SNP
may be excluded due to P-value > 0.05, but this
SNP may be associated with disease when com-
bined with other SNPs [13]. However, the search
abilities of these methods are insufficiently robust
for large numbers of SNPs.

In this study, we used local search to improve on
GA to enhance population diversity. Local search
can reduce the probability of the same vector be-
ing identified between two selected chromosomes
to create a crossover operation. A high-dimensional
data set was simulated using the biological parame-
ters of SNPs. The results of the improved GA out-
perform those of the traditional GA.

2 Method

2.1 Problem definition

An SNP represents three types of genotypes, in-
cluding ’AA’ (homozygous reference genotype),
’Aa’ (heterozygous genotype), and ’aa’ (homozy-
gous variant genotype). In this study, the geno-
type at SNPi is defined as a set Gi = {1, 2, 3
|1=’AA’, 2=’Aa’, 3=’aa’}, where i is the ith SNP
in n SNPs (n=total number of SNPs) which is re-
lated to disease. Genetic association identification
aims to select the m SNP (m≥2) by determining
whether their combination has significant associa-
tions with disease or not. A genetic association can
be regarded as a set E = {s1, s2, s3, ..., sm}, where si

= {SNPi, Gi} and the problem space consists of the
m-dimensional SNP selection. The objective func-
tion f (E)(f : δ ⊆ RmR) is defined by chi-square test

(χ2) and the objective E∗ is the set E with highest
χ2 value, i.e., f (E∗) > f (E) for all E ∈δ, where δ is
a non-empty large finite set serving as the problem
space.

2.2 Genetic algorithm

Genetic algorithm (GA) was proposed by Holland
[15] and has been applied to research in artificial in-
telligence, such as gene expression in biology prob-
lems. Thus, GA has been applied to the problems of
classification [16] and primer design [17]. In GA,
a chromosome is represented as an available solu-
tion in the search space, i.e., a genetic association
set E. Each chromosome is evaluated by the ob-
jective function, and the good chromosomes have a
higher probability to precede the evolutionary oper-
ation. Furthermore, bad chromosomes will be elim-
inated from the population, leaving the promising
elements in the good chromosomes for the next gen-
eration. The evolutionary strategy in GA includes
six operations: (1) chromosome initialization, (2)
population estimation, (3) selection operation, (4)
crossover operation, (5) mutation operation, and (6)
replacement operation. Algorithm 1 shows the GA
process.

2.3 Genetic algorithm based on the local
search algorithm

The local search algorithm searches the k-exchange
neighborhood to improve the chromosome from the
current solution by exchanging at most k elements
[18]. Various studies have successfully applied the
local search algorithm to improve evolutionary al-
gorithms, such as multi-objective flexible job-shop
scheduling problem [19], multi-modal optimization
[20] and best-offspring hybrid genetic algorithm
[21]. This study use the local search algorithm to
enhance the population diversity after the mutation
operation in GA process (lsGA). Algorithm 2 shows
the lsGA pseudo-code. The detailed operations are
explained in the following sections.

Chromosomal representation

The chromosomes are defined by the definition of
genetic association and are shown below:

Cl = {SNPl, Gl},

where SNPl is a set included the selected m SNPs,
where l is the lth chromosome in the population, in
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which each SNP cannot be selected repeatedly. Glis
a set including the genotypes which correspond to
SNPl . Let Cl = {10, 17, 1, 2}, which indicates that
the ith chromosome consists of the ’AA’ genotype
of SNP10 and ’Aa’ genotype of SNP17, in which the
number of the SNP is its order in the dataset.

Objective function

In the GA process, the objective function is used
to estimate the values of the chromosomes, referred
to as fitness values. The chi-square test (χ2) aims
to identify the significant epistasis. The objective
function can be written as:

F(Cl) =
(a+b+ c+d)(a×d −b× c)2

(a+b)(c+d)(a+ c)(b+d)
(1)

where a, b, c, and d are respectively the four cells
in the contingency table (see Table 1) The a is the
total number of matched Cl in the cases, b is the to-
tal number of matched Cl in the controls, c is the
total number of unmatched Cl in the cases, and d
is the total number of unmatched Cl in the control.
In this study, a high objective function indicates a
better chromosome.

Selection operation

In GA, genetic operations requires two parents (P1
and P2) to produce two children (P’1 and P’2), and
the parents are selected by the selection operation.
We used rank-based tournament selection which
ranks the chromosomes according to their fitness
values and selects the two top chromosomes as the
parents.

Crossover operation

The crossover operation performed a one-point
crossover that randomly generated the D binary
strings (D is the dimension of the parent). The
first string indicates that the elements of two parents
P1 and P2 need to be exchanged, while remaining
strings are unchanged. Let binary strings = {1, 0, 0,
1}, P1 = {1, 4, 2, 1}, and P2 = {2, 4, 1, 3}, the two
offsprings P’1 and P’2 are {2, 4, 2, 3} and {1, 4, 1,
1}, respectively.

Mutation operation

The mutation operation performed the binary string
mutation in which each bit in the binary string ran-
domly generated a probability. If the probability is

smaller than mutation threshold, this point in the
offspring randomly generates a possible element. If
the binary string remains unchanged after the mu-
tation operation, this operation is repeatedly per-
formed until a single bit is mutated.

Local search algorithm

The local search algorithm was used to find the bet-
ter solution in the offspring neighborhood, and it
could enhance the population diversity, especially
when the production of offsprings is similar in the
population. Algorithm 3 shows the pseudo-code of
the local search algorithm. P’ indicates the off-
springs and C’ is the neighboring offspring. d is
the increased distance value between P’ and C’. If
the fitness value of C’ is better than the fitness value
of P’, then C’ replaces P’.

Replacement operation

The replacement operation aims to keep the good
chromosomes for genetic operations in the follow-
ing generation. The two producing offspring are
added into the population and the least two chro-
mosomes with low fitness values are deleted from
the population.

Algorithm 1 – GA pseudo-code

01: begin
02: Initial population
03: while (generation ̸= termination)
04: Evaluate population
05: Selection
06: Crossover
07: Mutation
08: Replacement
09: Output best chromosome
10: end

Algorithm 2 – lsGA pseudo-code

01: begin
02: Initial population
03: while (generation ̸= termination)
04: Evaluate population
05: Selection
06: Crossover
07: Mutation
08: Local search
09: Replacement
10: Output best chromosome
11: end
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Algorithm 3 – Local search algorithm pseudo-code

01: begin
02: for (i=1; i < total number of offsprings; i++)
03: Copy ith offspring P’i into C’i;
04: for (j=1; j < the dimension of C’i; j++)
05: d j=l j × Rand [0:1]; l j={ l j ∈N: l j

<max(C j)}
06: C’i j = C’i j + d j

07: If fitness (P’i) > fitness (C’i j)
08: Replace P’i by C’i j

09: end

3 Result and Discussion

3.1 Data set

In the performance comparison, two epistasis mod-
els, ZZ model [22, 23] and XOR model [24], were
selected to test all methods. The XOR model is
the nonlinear epistasis, and high risk of disease is
dependent on inheriting a heterozygous genotype
from one locus or a heterozygous genotype from
another locus, but not all loci. In the ZZ model,
high risk of disease is dependent upon inheriting ex-
actly two high-risk alleles from two loci. MAFs of
disease-associated SNPs were set at 0.1 and 0.2, and
MAFs of unassociated SNPs were set from [0.05,
0.5]. Total numbers of SNPs were 50 and 100, and
total numbers of samples were 400 (cases = 200
and controls = 200) and 1000 (cases = 500 and con-
trols = 500). GAMETES was used to generate the
SNP dataset using the above parameters [25]. Each
parameter combination generated 100 data sets in
each disease model. The objective is to identify the
significant genetic association models.

3.2 Parameter settings

In this study, all methods used the same parame-
ters and the same initial population to test statisti-
cal ability to identify genetic associations. The ex-
change probability for the one-point selection op-
eration is 1.0 and the exchange probability for the
one-point mutation operation is 0.1. The popula-
tion size is 50 and the total number of generations
is 1000.

3.3 Evaluation of identified genetic associ-
ation models in 12 XOR models and 12
ZZ models

In this study, each initial population between GA
and lsGA is the same and the random seed in the
program is also the same. Figures 1 and 2 show the
results of three-order genetic association models in
GA and lsGA. The symbols, upper side and lower
side, in each point indicate the mean ± standard de-
viation (SD), and each point saves all fitness values
of the population for every 50 generations over 100
data sets.

In Figure 1, the results for all generations
showed that the mean best fitness values from lsGA
outperform those of the traditional GA in 12 XOR
models. The difference of chi-square test (χ2)
values (fitness values) between GA and lsGA is
very large, indicating that lsGA outperforms GA in
identifying the most significant genetic association
model, and the increased χ2 values indicate that the
p-value is decreased, i.e., p-value << 0.05. Both
total number of SNPs and samples can influence the
χ2 values, in which the χ2 values of large samples
are higher than small samples because the a and d
in Table 1 increases when the total number of sam-
ples are increased. The χ2 values of SNP = 500
are lower than other XOR models with SNP = 50
and 100. This clearly shows that a high total num-
ber of SNPs can increase the degree of difficulty
in processing the evolutionary algorithm. However,
lsGA can enhance the χ2 values, especially in XOR
model with SNP = 500 and sample = 1000. This
shows that the local search algorithm facilitates the
finding of better solutions.

Table 1. Contingency table of a chromosome

Case Control Total
Cl a b a+b
Cl c d c+d
Total a+c b+d a+b+c+d

Cl indicates unmatching Cl

In Figure 2, results for all generations show that
the mean of best fitness values from lsGA outper-
form those of GA in 12 ZZ models, and the high
χ2 values indicate that significant genetic associa-
tion models are identified by GA and lsGA. How-
ever, lsGA identified more significant genetic asso-
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ciation models than GA did. In the ZZ model, the
χ2 values slowly increase over generations due to
the high risk of disease in ZZ model being depen-
dent upon inheriting the two high risk alleles from
two loci, resulting in only three possible genotype
combinations, in which the combination with only
one homozygous reference genotype may have high
risk in the three-order genetic association models.
Therefore, the population may easily be trapped in
a local optima. However, lsGA can continually en-
hance the χ2 values, especially in ZZ models with
SNP = 500. This shows that the local search algo-
rithm can avoid the population being trapped in a
local optima.

Table 2 shows the average results of a simple
linear regression for best fitness values and the av-
erage amount of fitness values for the population
using GA and lsGA methods in the XOR and ZZ
models. The positive β values indicate that the lsGA
is superior to GA, and the high value indicates the
greater improvement. The p-value (P>t) is used to
determine whether lsGA significantly improves on
GA in XOR and ZZ models. The lsGA shows a
significant advantage as compared to the GA, pro-
viding the highest β values and significant p-value.

3.4 Comparison of GA and lsGA for pop-
ulation

Figures 3 and 4 show the mean sum of fitness val-
ues of the population in the form of a log10 value
over the number of generation in GA and lsGA. The
symbols, upper side and lower side, are the mean
± standard deviation (SD). Each point is the mean
sum of the fitness values in the population over 100
data sets.

The distribution curves in Figures 3 and 4 are
respectively similar with those in Figure 1 and 2,
indicating the values of chromosomes are improved
by the genetic operations of GA. In addition, the im-
provement trend in GA is relatively slow, while that
in lsGA is more obvious. This indicates that the lo-
cal search algorithm can provide better offspring to
advance the population for finding better epistasis
models in the XOR and ZZ models.

3.5 Effectiveness comparison of GA and
lsGA

The effectiveness of the proposed lsGA is shown by
computer simulations on genetic association mod-
els consisting of 12 XOR models and 12 ZZ mod-
els. The results clearly showed that lsGA can ef-
fectively escape from the local optima. Thus, the
more significant genetic association models could
be identified by lsGA, and these genetic association
models with high risk included several SNPs which
can help improve understanding of the associations
between genes and disease. Several local search
algorithms have been proposed to improve evolu-
tionary algorithms in various problems, including
multi-objective optimization [26], location-routing
problem [27], and so on. Therefore, our proposed
lsGA may be able to solve other problems. Further-
more, these local search algorithms may be more
effectively in improving the search ability of GA
for identifying better genetic association models.

3.6 Runtime comparison of GA and lsGA

The computational running time of lsGA was sim-
ilar to that of GA. The local search algorithm eval-
uates the D-dimensional vectors in the two off-
springs after the mutation operation. The compu-
tational complexity of GA can be represented as
big-O(NM), where N is the total number of gener-
ations and M is the total population size. lsGA is
big-O(N(M+2D)), where D is the chromosome di-
mension. The D is very small in the problem of
identifying genetic associations, e.g., a 3-order ge-
netic association only uses a 6-dimensional vector.
However, lsGA is superior to GA in terms of find-
ing better genetic association models with higher χ2

values.

4 Conclusions

The local search algorithm is used to improve
the GA (named as lsGA) to detect genetic asso-
ciations amongst disease-related genes. Two dis-
ease models are used to evaluate the ability of lsGA
to detect significant genetic association models re-
garding the marks of SNPs located in susceptibility
genes. Our results show that lsGA can detect more
significant models than GA, and continued to effec-
tively enhance the χ2 values for finding better mod-
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Table 2. Comparison of GA and lsGA in the mean of best fitness values and in mean sum of fitness values
of population in XOR and ZZ model by simple linear regression

Figure 1. Mean best fitness values in the form of a log10 value over the number of generations for GA and
lsGA in the 12 XOR models. The error bar is evaluated by the standard deviation in each point.

Table 2—comparison of gA and lsgA in the mean of best fitness values and in mean 

sum of fitness values of population in Xor and ZZ model by simple linear regression. 

 
  MAf = 0.1,  

sample size = 400   MAf = 0.1,  
sample size = 1000   MAf = 0.2,  

sample size = 400   MAf = 0.2,  
sample size = 1000 

  β P>t    β P>t    β P>t    β P>t  
Mean of best fitness values 
Xor model            snps = 50 0.23  1.10e-98  0.21  4.58e-81  0.39  4.12e-154  0.16  4.94e-24 
snps = 100 0.25  5.49e-122  0.21  6.04e-82  0.41  7.81e-171  0.33  7.84e-106 
snps = 500 0.33  2.83e-219  0.30  8.80e-170  0.37  3.41e-137  0.34  6.28e-115 
ZZ model            snps = 50 0.29  1.79e-158  0.34  2.04e-223  0.35  5.57e-124  0.30  1.40e-123 
snps = 100 0.26  6.21e-126  0.35  3.00e-245  0.27  1.51e-69  0.34  1.22e-84 
snps = 500 0.13  4.06e-31  0.11  9.65e-24  0.19  1.69e-34  0.06  5.18e-61 
Mean sum of fitness values of population 
Xor model            snps = 50 0.26  9.20e-134  0.26  2.32e-125  0.37  1.62e-138  0.24  9.64e-58 
snps = 100 0.28  8.96e-153  0.22  3.48e-95  0.39  2.15e-149  0.35  5.20e-120 
snps = 500 0.34  1.68e-232  0.32  1.08e-199  0.37  1.14e-134  0.34  8.40e-116 
ZZ model            snps = 50 0.32  2.69e-197  0.36  8.52e-261  0.35  8.05e-91  0.36  4.73e-131 
snps = 100 0.27  1.40e-138  0.36  5.06e-260  0.29  9.41e-117  0.36  2.83e-129 
snps = 500 0.18  4.93e-59   0.10  2.47e-18   0.25  2.76e-05   0.08  5.02e-08 
 

 

 

Figure legends 

Figure 1—Mean best fitness values in the form of a log10 value over the number of 

generations for gA and lsgA in the 12 Xor models. the error bar is evaluated by the 

standard deviation in each point. 
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Figure 2. Mean best fitness values in the form of a log10 value over the number of generations for GA and
lsGA in the 12 ZZ models. The error bar is evaluated by the standard deviation in each point.
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els, indicating that lsGA can be applied to identify
complex genetic association models in large data
sets.
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