PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Manufacturing Errors on the Operation of the Eccentric Rolling Transmission

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The eccentric rolling transmission consists of rolling bearings mounted eccentrically on the input shaft, cooperating with cam wheels, which are mounted on the output shaft. The aim of this paper was to determine the sensitivity of the transmission to the manufacturing errors of the cam wheel. Two methods of cam wheels milling using a universal CNC machining center were proposed. The measurements of manufactured wheels were performed using a blue light 3D scanner, which allowed the determination of geometric dimensions and deviations from nominal geometry. The experimental research of the eccentric rolling transmission prototype equipped with manufactured cam wheels was conducted, measuring the torque on the gear shafts as a function of its angular position. On the basis of the obtained results, the impact of manufacturing errors on the operation of the transmission unit was examined, especially in terms of torque and efficiency. It was indicated that the machining using ball nose end mill ensures sufficient accuracy of the cam wheels.
Twórcy
  • Institute of Mechanical Technology, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland
  • Institute of Mechanical Technology, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland
Bibliografia
  • 1. Armillotta A. Tolerance analysis of gear trains by static analogy. Mechanism and Machine Theory, 135, 2019, 65-80.
  • 2. Bouquet J., Hensgen L., Klink A., Jacobs T., Klocke F. and Lauwers B. Fast production of gear prototypes - a comparison of technologies, Procedia CIRP, 14, 2014, 77-82.
  • 3. Chang S.L. Studies on epitrochoid gear for cycloid drives. Journal of Mechanics, 19(2), 2003, 271-278.
  • 4. Chen T. and Shi Z. A tool path generation strategy for three-axis ball-end milling of free-form surfaces. Journal of Materials Processing Technology, 208, 2008, 259-263.
  • 5. Chen T.T., Wang J.P., Huang G.M., Hsu M.H., Chen C.L., Hong B.W. and Wey J.M. High-precision technology with negative punch clearance for the manufacturing of a cycloid pump. International Journal of Advanced Manufacturing Technologies, 95, 2018, 1179-1183.
  • 6. Dascalescu A. and Ungureanu M. CAD-CAM programs applied to the cycloid profile wheels processing. Annals of the University of Petrosani, Mechanical Engineerings, 12, 2010, 65-70.
  • 7. Gessner A., Staniek R. and Bartkowiak T. Computer-aided alignment of castings and machining optimization. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(3), 2015, 485-492.
  • 8. Huang X., Hu S., Zhang Y. and Xu Y. A method to determine kinematic accuracy reliability of gear mechanisms with truncated random variables. Mechanism and Machine Theory, 92, 2015, 200-213.
  • 9. Lai T.S. Design and machining of the epicycloid planet gear of cycloid drives. International Journal of Advanced Manufacturing Technologies, 28, 2006, 665-670.
  • 10. Li S. Effects of machining errors, assembly errors and tooth modifications on loading capacity, load-sharing ratio and transmission error of a pair of spur gears. Mechanism and Machine Theory, 42, 2007, 698-726.
  • 11. Li Z., Sato R., Shirase K., Ihara Y. and Milutinovic D.S. Sensitivity analysis of relationship between error motions and machined shape errors in fiveaxis machining center - peripheral milling using square end mill as test case. Precision Engineering, 60, 2019, 28-41.
  • 12. Lin K.S., Chan K.Y. and. Lee J.J. Kinematic error analysis and tolerance allocation of cycloidal gear reducers. Mechanism and Machine Theory, 124, 2018, 73-91.
  • 13. Luo S., Liao L., Wang J., Wang Y. and Yi J. Study on inspection and avoidance of interferences in fiveaxis end milling of cycloidal gears. International Journal of Advanced Manufacturing Technologies, 91, 2017, 3307-3314.
  • 14. Malek O., Mielnik K., Martens K., Jacobs T., Bouquet J., Auwers W., Ten Haaf P. and Lauwers B. Lead time reduction by high precision 5-axis milling of a prototype gear. Procedia CIRP, 46, 2016, 440-443.
  • 15. Ozel C. and Ortac Y. A study on the cutting errors of the tooth profiles of the cycloidal gears manufactured in CNC milling machine. International Journal of Materials and Product Technology, 53(1), 2016, 42-60.
  • 16. Pabiszczak S., Myszkowski A. and Staniek R. Eccentric rolling transmission gear, patent PL 233658, 2016.
  • 17. Pabiszczak S., Myszkowski A., Staniek R. and Macyszyn Ł. Kinematic analysis and design of eccentric rolling transmission, Proceedings of ASME International Mechanical Engineering Congress and Exposition, Tampa, Florida, USA 2017, Vol. 14.
  • 18. Pabiszczak S., Ptaszynski W. and Staniek R. The Impact of Manufacturing Accuracy of Selected Components on Contact Stress in the Eccentric Rolling Transmission. Lecture Notes in Mechanical Engineering, Advances in Manufacturing II, 2, 2019, 176-187.
  • 19. Radzevich S.P. Dudley’s handbook of practical gear design and manufacture. CRC Press Taylor & Francis Group, 2012.
  • 20.Shu Z.H., Shi Z.Y., Chen H.F., Lin J.C. and Kang Y. Research on gear integrated error curves, International Gear Conference, Lyon, France 2014, 418-426.
  • 21. Sortino M., Belfio S., Motyl B. and Totis G. Compensation of geometrical errors of CAM/CNC machined parts by means of 3D workpiece model adaptation. Computer-Aided Design, 48, 2014, 28-38.
  • 22. Tsai C.Y. and Lin P.D. Gear manufacturing using power-skiving method on six-axis CNC turn-mill machining center, International Journal of Advanced Manufacturing Technologies, 95, 2018, 609-623.
  • 23. Wang X.Y., Shi Z.Y., Shu Z.H. and Fu S. Study on evaluation system of gear accuracy based on statistical analysis. International Gear Conference, Lyon, France 2014, 905-913.
  • 24. Zhang C. and Wang Y. Realization on cycloid tooth profile for CNC processing. Applied Mechanics and Materials, 197, 2012, 60-63.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-300b9756-28cb-4312-b53a-706b1b785d0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.