PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The encapsulation of antibacterial drugs in polymer nanoparticles and their use in drug delivery systems on ZrO2 scaffold with bioactive coating

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bone infections are a challenging problem as they may cause a permanent patient disability and even death. Additionally, their relapse rate is relatively high. The implantation of a local drug delivery system can be an effective way to fight bone infections. In this study, we present the process of surface bioactivation and immobilization of nanoparticles loaded with drugs. Our aim was to improve osseointegration of the ZrO2 surface by coating it with a bioactive layer containing poly(L-lactide-co-glycolide)(PLGA) nanoparticles (NPs) loaded with antibacterial drugs (gentamicin and bacitracin) using a biomimetic precipitation method. The ZrO2 substrates were prepared via pressing and sintering. The CaP-coating was obtained by immersing the substrates in ten-times concentrated simulated body fluid (10×SBF). NPs were prepared by the double emulsion method and the drug loading in NPs was assessed. Thus obtained NPs were applied on bioactivated ceramic substrates by the drop-casting method or by introducing them in the 10×SBF solution during the bioactivation process. The NPs were visualized using scanning electron microscopy (SEM). The NPs size and the Zeta potential were measured using dynamic light scattering (DLS) method. The microstructure of the coating and the efficiency of the NPs incorporation were tested by SEM. In this study, we proved the presented process to be an effective way to obtain biomaterials that could be used as drug delivery systems to treat bone infections in the future.
Rocznik
Strony
21--27
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr., zdj.
Twórcy
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków, Poland
  • RWTH Aachen University, Department of Ceramics and Refractory Materials, Mauerstrasse 5, 52064 Aachen, North Rhine-Westphalia, Germany
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków, Poland
  • RWTH Aachen University, Department of Ceramics and Refractory Materials, Mauerstrasse 5, 52064 Aachen, North Rhine-Westphalia, Germany
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] S.G. Rotman, K. Thompson, D.W. Grijpma, R.G. Richards, T.F. Moriarty, D. Eglin, O. Guillaume: Development of bone seekerfunctionalised microspheres as a targeted local antibiotic delivery system for bone infections. Journal of Orthopaedic Translation 21 (2020) 136-145.
  • [2] R. Nair, M.L. Schweizer, N. Singh: Septic Arthritis and Prosthetic Joint Infections in Older Adults. Infectious Disease Clinics of North America 31(4) (2017) 715-729.
  • [3] U. Posadowska, M. Brzychczy-Włoch, E. Pamuła: Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment. Acta of Bioengineering and Biomechanics 17(3) (2015) 41-47.
  • [4] K.D. Alder, I. Lee, A.M. Munger, H.-K. Kwon, M.T. Morris, S.V. Cahill, J. Back, K.E. Yu, F.Y. Lee: Intracellular Staphylococcus aureus in bone and joint infections: A mechanism of disease recurrence, inflammation, and bone and cartilage destruction. Bone 141 (2020) 115568.
  • [5] R.H. Tang, J. Yang, J. Fei: New perspectives on traumatic bone infections. Chinese Journal of Traumatologu - English Edition 23(6) (2020) 314-318.
  • [6] B. Spellberg, B.A. Lipsky: Systemic antibiotic therapy for chronic osteomyelitis in adults. Clinical Infectious Diseases 54(3) (2012) 393-407.
  • [7] S.K. Nandi, S. Bandyopadhyay, P. Das, I. Samanta, P. Mukherjee, S. Roy, B. Kundu: Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnology Advances 34(8) (2016) 1305-1317.
  • [8] S. Gitelis, G.T. Brebach: The treatment of chronic osteomyelitis with a biodegradable antibiotic-impregnated implant. Journal of Orthophaedic Surgery 10(1) (2002) 53-60.
  • [9] D. Neut, O.S. Kluin, B.J. Crielaard, H.C. Van Der Mei, H.J. Busscher, D.W. Grijpma: A biodegradable antibiotic delivery system based on poly-(trimethylene carbonate) for the treatment of osteomyelitis. Acta Orthopaedica 80(5) (2009) 514-519.
  • [10] B. Nie, H. Ao, J. Zhou, T. Tang, B. Yue: Biofunctionalization of titanium with bacitracin immobilizationshows potential for antibacteria, osteogenesis and reduction ofmacrophage inflammation. Colloids Surfaces B: Biointerfaces 145 (2016) 728-739.
  • [11] H. Li, B. Nie, Z. Du, S. Zhang, T. Long, B. Yue: Bacitracin promotes osteogenic differentiation of human bone marrow mesenchymal stem cells by stimulating the bone morphogenetic protein-2/ Smad axis. Biomedicine and Pharmacotherapy 103 (2018) 588-597.
  • [12] L.J. Ming, J.D. Epperson: Metal binding and structure-activity relationship of the metalloantibiotic peptide bacitracin. Journal of Inorganic Biochemistry 91(1) (2002) 46-58.
  • [13] T. Jiang, X. Yu, E.J. Carbone, C. Nelson, H.M. Kan, K.W.H. Lo: Poly aspartic acid peptide-linked PLGA based nanoscale particles: Potential for bone-targeting drug delivery applications. International Journal of Pharmaceutics 475(1) (2014) 547-557.
  • [14] S.G. Rotman, D.W. Grijpma, R.G. Richards, T.F. Moriarty, D. Eglin, O. Guillaume: Drug delivery systems functionalized with bone mineral seeking agents for bone targeted therapeutics. Journal of Controlled Release 269 (2018) 88-99.
  • [15] K. Nazemi, P. Azadpour, F. Moztarzadeh, A.M. Urbanska, M. Mozafari: Tissue-engineered chitosan/bioactive glass bone scaffolds integrated with PLGA nanoparticles: A therapeutic design for on-demand drug delivery. Materials Letters 138 (2015) 16-20.
  • [16] H. Gul, M. Khan, A.S. Khan: 3 - Bioceramics: types and clinical applications. In Woodhead Publishing Series in Biomaterials, Handbook of Ionic Substituted Hydroxyapatites, Woodhead Publishing (2020) 53-83.
  • [17] R. Mala, A.S. Ruby Celsia: Bioceramics in orthopaedics: A review. In Woodhead Publishing Series in Biomaterials, Fundamental Biomaterials: Ceramics, Woodhead Publishing (2018) 195-221.
  • [18] K.S. Naik: Chapter 25 - Advanced bioceramics. Advances in Biological Science Research, Academic Press (2019) 411-417.
  • [19] K. Shanmugam, R. Sahadevan: 1 - Bioceramics - An introductory overview. In Woodhead Publishing Series in Biomaterials, Fundamental Biomaterials: Ceramics, Woodhead Publishing (2018) 1-46.
  • [20] J. Faig-Martí, F.J. Gil-Mur: Hydroxyapatite coatings in prosthetic joints. Revista Española de Cirugía Ortopédica y Traumatología (English Edition) 52(2) (2008) 113-120.
  • [21] A.C. Tas, S.B. Bhaduri: Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10x simulated body fluid. Journal of Materials Research 19(9) (2004) 2742-2749.
  • [22] D.O. Costa, B.A. Allo, R. Klassen, J.L. Hutter, S.J. Dixon, A.S. Rizkalla: Control of surface topography in biomimetic calcium phosphate coatings. Langmuir 28(8) (2012) 3871-3880.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3009609c-cace-4824-9d09-acde1be00979
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.