Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Macroalgae are one of the potential natural sources for the isolation of novel eco-friendly antifouling compounds. In this study, the antifouling activity of an extract of the brown macroalga Dictyota dichotoma collected from the Red Sea was tested against bacteria isolated from the marine biofilm and larval forms of the barnacle. A maximum inhibition of barnacle larval settlement of 89.36% was observed in 25 µg ml-1 extract concentration at 24 h treatment. The secondary metabolite composition of the extract was analyzed by GC-MS and compounds were used as ligands for molecular docking with barnacle cement protein. The toxicity profile of secondary metabolites present in the extract was predicted through in silico analysis. The results indicate that the crude extract of the alga inhibited the biofilm formation by the bacteria and significantly reduced the settlement of the barnacle larvae. GC-MS analysis of the extract revealed the presence of five metabolites, including two fatty acids. All metabolites showed higher binding affinity with barnacle cement than the reference compound, copper. Among the secondary metabolites detected in the algal extract, the cholestane derivative exhibited maximum binding affinity (–14.2 kcal mol-1) with barnacle cement. The metabolites also showed positive for crustacean and fish toxicity in toxicity prediction using an in silico method.
Czasopismo
Rocznik
Tom
Strony
237--248
Opis fizyczny
Bibliogr. 62 poz., rys., tab., wykr.
Twórcy
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
autor
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
Bibliografia
- [1]. Alarif, W. M., Al-Lihaibi, S. S., Abdel-Lateff, A., & Ayyad, S. E. N. (2011). New antifungal cholestane and aldehyde derivatives from the red alga Laurencia papillosa. Natural Product Communications, 6(12), 1934578X1100601208.
- [2]. Arabshahi, H. J., Trobec, T., Foulon, V., Hellio, C., Frangež, R., Sepčić, K., Cahill, P., & Svenson, J. (2021). Using virtual AChE homology screening to identify small molecules with the ability to inhibit marine biofouling. Frontiers in Marine Science, 8, 762287. Advance online publication. https://doi.org/10.3389/fmars.2021.762287
- [3]. Ba-Akdah, M. A., Satheesh, S., & Al-Sofyani, A. A. (2016). Habitat preference and seasonal variability of epifaunal assemblages associated with macroalgal beds on the Central Red Sea coast, Saudi Arabia. Journal of the Marine Biological Association of the United Kingdom, 96, 1457-1467. https://doi.org/10.1017/S0025315415001678
- [4]. Bakar, K. A. M. A. R. I. A. H., Mohamad, H., Latip, J. A. L. I. F. A. H., Tan, H. S., & Herng, G. M. (2017). Fatty acids compositions of Sargassum granuliferum and Dictyota dichotoma and their anti-fouling activities. Journal of Sustainability Science and Management, 12(2), 8-16.
- [5]. Balqadi, A. A., Salama, A. J., & Satheesh, S. (2018). Microfouling development on artificial substrates deployed in the central Red Sea. Oceanologia, 60, 219-231. https://doi.org/10.1016/j.oceano.2017.10.006
- [6]. Bazes, A., Silkina, A., Douzenel, P., Faÿ, F., Kervarec, N., Morin, D., Berge, J. P., & Bourgougnon, N. (2009). Investigation of the antifouling constituents from the brown alga Sargassum muticum (Yendo) Fensholt. Journal of Applied Phycology, 21(4), 395-403. https://doi.org/10.1007/s10811-008-9382-9
- [7]. Blunt, J. W., Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., & Prinsep, M. R. (2018). Marine natural products. Natural Product Reports, 35, 8-53. https://doi.org/10.1039/C7NP00052A PMID:29335692
- [8]. Chen, J., Li, H., Zhao, Z., Xia, X., Li, B., Zhang, J., & Yan, X. (2018). Diterpenes from the marine algae of the genus Dictyota. Marine Drugs, 16(5), 159. https://doi.org/10.3390/md16050159 PMID:29751686
- [9]. Cho, C. H., Lu, Y. A., Kim, M. Y., Jeon, Y. J., & Lee, S. H. (2022). Therapeutic potential of seaweed-derived bioactive compounds for cardiovascular disease treatment. Applied Sciences (Basel, Switzerland), 12(3), 1025. https://doi.org/10.3390/app12031025
- [10]. Coffey, B. M., & Anderson, G. G. (2014) Biofilm formation in the 96-well microtiter plate. In: Filloux A, Ramos JL (eds) Pseudomonas methods and protocols, methods in molecular biology (methods and protocols), vol 1149. Humana Press, New York, pp 631-641. https://doi.org/10.1007/978-1-4939-0473-0_48
- [11]. Cotas, J., Leandro, A., Monteiro, P., Pacheco, D., Figueirinha, A., Gonçalves, A. M. M., da Silva, G. J., & Pereira, L. (2020). Seaweed phenolics: From extraction to applications. Marine Drugs, 18(8), 384. https://doi.org/10.3390/md18080384 PMID:32722220
- [12]. Dahms, H. U., & Dobretsov, S. (2017). Antifouling compounds from marine macroalgae. Marine Drugs, 15, 265. https://doi.org/10.3390/md15090265 PMID:28846625
- [13]. Das, B., & Srinivas, K. V. N. S. (1993). Two New Sterols from the Marine Red Alga Gracilaria edulis. Planta Medica, 59(6), 572-573. https://doi.org/10.1055/s-2006-959768 PMID:17230370
- [14]. Dashtegol, S., Motalebi Moghanchoghi, A., Razavilar, V., & Mortazavi, M. S. (2021). Isolation and semi purification of steroid compounds from Colpomenia sinuosa (Derbès & Solier, 1851) algae of the Persian Gulf and in vitro screening of antimicrobial effects. Iranian Journal of Fisheries Science, 20(1), 129-140. https://doi.org/10.22092/ijfs.2021.123503
- [15]. Dassamiour, S., Bensaad, M. S., Hambaba, L., Melakhessou, M. A., Sami, R., Al-Mushhin, A. A., Aljahani, A. H., & Al Masoudi, L. M. (2022). In silico investigation of some compounds from the N-Butanol extract of Centaurea tougourensis Boiss. & Reut. Crystals, 12(3), 355. https://doi.org/10.3390/cryst12030355
- [16]. El-Din, S. M. M., & El-Ahwany, A. M. (2016). Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). Journal of Taibah University for Science : JTUSCI, 10(4), 471-484. https://doi.org/10.1016/j.jtusci.2015.06.004
- [17]. Gadhi, A. A., El-Sherbiny, M. M., Al-Sofynai, A. M., Ba-Akdah, M. A., & Satheesh, S. (2018). Antimicrofouling activities of marine macroalga Dictyota dichotoma from the Red Sea. Journal of Agricultural and Marine Sciences, 23, 58-67.
- [18]. Ghallab, D. S., Shawky, E., Ibrahim, R. S., & Mohyeldin, M. M. (2022). Comprehensive metabolomics unveil the discriminatory metabolites of some Mediterranean Sea marine algae in relation to their cytotoxic activities. Scientific Reports, 12(1), 8094. https://doi.org/10.1038/s41598-022-12265-7 PMID:35577889
- [19]. Gohad, N. V., Aldred, N., Hartshorn, C. M., Jong Lee, Y., Cicerone, M. T., Orihuela, B., Clare, A. S., Rittschof, D., & Mount, A. S. (2014). Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae. Nature Communications, 5, 4414. Advance online publication. https://doi.org/10.1038/ncomms5414 PMID:25014570
- [20]. Gu, Y., Yu, L., Mou, J., Wu, D., Xu, M., Zhou, P., & Ren, Y. (2020). Research strategies to develop environmentally friendly marine antifouling coatings. Marine Drugs, 18(7), 371. https://doi.org/10.3390/md18070371 PMID:32708476
- [21]. Hay, M. E., & Fenical, W. (1988). Marine plant-herbivore interactions: The ecology of chemical defense. Annual Review of Ecology and Systematics, 19, 111-145. https://doi.org/10.1146/annurev.es.19.110188.000551
- [22]. Hay, M. E. (1997). The ecology and evolution of seaweed-herbivore interactions on coral reefs. Coral Reefs, 16, S67- S76. https://doi.org/10.1007/s003380050243
- [23]. Hussein, J. H., Hadi, M. Y., & Hameed, I. H. (2016). Study of chemical composition of Foeniculum vulgare using Fourier transform infrared spectrophotometer and Gas chromatography - mass spectrometry. Journal of Pharmacognosy and Phytotherapy, 8, 60-89. https://doi.org/10.5897/JPP2015.0372
- [24]. Inbakandan, D., Raj, S., Kumar, C., Venkatesan, R., & Khan, S. A. (2016). Virtual screening of marine natural antifoulant: In silico approach to screen antifouling metabolites from marine sponges. Indian Journal of Geo-Marine Sciences, 45(8), 1042-1048.
- [25]. Kamino, K., Odo, S., & Maruyama, T. (1996). Cement proteins of the acorn barnacle, Megabalanus rosa. The Biological Bulletin, 190, 403-409. https://doi.org/10.2307/1543033 PMID:8679743
- [26]. Khadke, S. K., Lee, J. H., Kim, Y. G., Raj, V., & Lee, J. (2021). Assessment of antibiofilm potencies of nervonic and oleic acid against Acinetobacter baumannii using in vitro and computational approaches. Biomedicines, 9(9), 1133. https://doi.org/10.3390/biomedicines9091133 PMID:34572317
- [27]. Kyei, S. K., Darko, G., & Akaranta, O. (2020). Chemistry and application of emerging ecofriendly antifouling paints: A review. Journal of Coatings Technology and Research, 17(2), 315-332. https://doi.org/10.1007/s11998-019-00294-3
- [28]. Li, X., Li, F., Jian, H., & Su, R. (2018). Exploration of antifouling potential of the brown algae Laminaria ‘Sanhai’. Journal of Ocean University of China, 17(5), 1135-1141. https://doi.org/10.1007/s11802-018-3524-8
- [29]. Liang, C., Strickland, J., Ye, Z., Wu, W., Hu, B., & Rittschof, D. (2019). Biochemistry of barnacle adhesion: An updated review. Frontiers in Marine Science, 6, 565. https://doi.org/10.3389/fmars.2019.00565
- [30]. Liu, L. L., Wu, C. H., & Qian, P. Y. (2020, November). Marine natural products as antifouling molecules - a mini-review (2014-2020). Biofouling, 36(10), 1210-1226. https://doi.org/10.1080/08927014.2020.1864343 PMID:33401982
- [31]. Liu, Y., Yang, X., Gan, J., Chen, S., Xiao, Z. X., & Cao, Y. (2022). CB-Dock2: Improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Research, 50, W159-W164. Advance online publication. https://doi.org/10.1093/nar/gkac394 PMID:35609983
- [32]. Maréchal, J. P., & Hellio, C. (2011). Antifouling activity against barnacle cypris larvae: Do target species matter (Amphibalanus amphitrite versus Semibalanus balanoides)? International Biodeterioration & Biodegradation, 65(1), 92-101. https://doi.org/10.1016/j.ibiod.2010.10.002
- [33]. Murugan, A., Begum, M. S., Ramasamy, M. S., & Raja, P. (2012). Antifouling and antipredatory activity of natural products of the seaweeds Dictyota dichotoma and Chaetomorpha linoides. Natural Product Research, 26(10), 975-978. https://doi.org/10.1080/14786419.2010.545355 PMID:21861643
- [34]. Nigam, S., Singh, R., Bhardwaj, S. K., Sami, R., Nikolova, M. P., Chavali, M., & Sinha, S. (2022). Perspective on the therapeutic applications of algal polysaccharides. Journal of Polymers and the Environment, 785-809. https://doi.org/10.1007/s10924-021-02231-1 PMID:34305487
- [35]. Omae, I. (2003). Organotin antifouling paints and their alternatives. Applied Organometallic Chemistry, 17, 81-105. https://doi.org/10.1002/aoc.396
- [36]. Pan, S. W., Li, Y. G., Su, H., Li, X., & Zhang, Y. B. (2019). Oleic acid impedes adhesion of Porphyromonas gingivalis during the early stages of biofilm formation. International Journal of Clinical and Experimental Medicine, 12, 9881-9889.
- [37]. Paradas, W. C., Tavares Salgado, L., Pereira, R. C., Hellio, C., Atella, G. C., de Lima Moreira, D., do Carmo, A. P. B., Soares, A. R., & Menezes Amado-Filho, G. (2016). A novel antifouling defense strategy from red seaweed: Exocytosis and deposition of fatty acid derivatives at the cell wall surface. Plant & Cell Physiology, 57, 1008-1019. https://doi.org/10.1093/pcp/pcw039 PMID:26936789
- [38]. Paul, V. J. (1992). Ecological roles of marine natural products. Comstock.
- [39]. Paul, V. J., Cruz-Rivera, E., & Thacker, R. W. (2001). Chemical mediation of macroalgal-herbivore interactions: ecological and evolutionary perspectives. In Marine chemical ecology (pp. 227-265). CRC Press.
- [40]. Paz-Villarraga, C. A., Castro, Í. B., & Fillmann, G. (2022). Biocides in antifouling paint formulations currently registered for use. Environmental Science and Pollution Research International, 29, 30090-30101. https://doi.org/10.1007/s11356-021-17662-5 PMID:34997484
- [41]. Pereira, R. C., & Vasconcelos, M. A. (2014). Chemical defense in the red seaweed Plocamium brasiliense: Spatial variability and differential action on herbivores. Brazilian Journal of Biology, 74, 545-552. https://doi.org/10.1590/bjb.2014.0080 PMID:25296201
- [42]. Plouguerné, E., De Souza, L. M., Sassaki, G. L., Hellio, C., Trepos, R., Da Gama, B. A., Pereira, R. C., & Barreto-Bergter, E. (2020). Glycoglycerolipids from Sargassum vulgare as potential antifouling agents. Frontiers in Marine Science, 7, 116. https://doi.org/10.3389/fmars.2020.00116
- [43]. Prasath, K. G., Tharani, H., Kumar, M. S., & Pandian, S. K. (2020). Palmitic acid inhibits the virulence factors of Candida tropicalis: Biofilms, cell surface hydrophobicity, ergosterol biosynthesis, and enzymatic activity. Frontiers in Microbiology, 11, 864. https://doi.org/10.3389/fmicb.2020.00864 PMID:32457728
- [44]. Qi, S. H., & Ma, X. (2017). Antifouling compounds from marine invertebrates. Marine Drugs, 15(9), 263. https://doi.org/10.3390/md15090263 PMID:28846623
- [45]. Qian, P.-Y., Chen, L., & Xu, Y. (2013). Mini-review: Molecular mechanisms of antifouling compounds. Biofouling, 29, 381-400. https://doi.org/10.1080/08927014.2013.776546 PMID:23574197
- [46]. Rima, M., Trognon, J., Latapie, L., Chbani, A., Roques, C., & El Garah, F. (2022). Seaweed extracts: A promising source of antibiofilm agents with distinct mechanisms of action against Pseudomonas aeruginosa. Marine Drugs, 20, 92. https://doi.org/10.3390/md20020092 PMID:35200622
- [47]. Saha, M., Goecke, F., & Bhadury, P. (2018). Minireview: Algal natural compounds and extracts as antifoulants. Journal of Applied Phycology, 30(3), 1859-1874. https://doi.org/10.1007/s10811-017-1322-0 PMID:29899600
- [48]. Salehi, B., Sharifi-Rad, J., Seca, A. M. L., Pinto, D. C. G. A., Michalak, I., Trincone, A., Mishra, A. P., Nigam, M., Zam, W., & Martins, N. (2019). Current trends on seaweeds: Looking at chemical composition, phytopharmacology, and cosmetic applications. Molecules (Basel, Switzerland), 24(22), 4182. https://doi.org/10.3390/molecules24224182 PMID:31752200
- [49]. Satheesh, S., & Ba-Akdah, M. A. (2022). Temporal variations in the antifouling activity of extract of the soft coral Sarcophyton trocheliophorum collected from the Red Sea. Ocean Science Journal, 57, 247-258. https://doi.org/10.1007/s12601-022-00062-2
- [50]. Satheesh, S., Ba-akdah, M. A., & Al-Sofyani, A. A. (2016). Natural antifouling compound production by microbes associated with marine macroorganisms—A review. Electronic Journal of Biotechnology, 21, 26-35. https://doi.org/10.1016/j.ejbt.2016.02.002
- [51]. Shameel, M., Shaikh, W., & Khan, R. (1991). Comparative fatty acid composition of five species of Dictyota (Phaeophyta). Botanica Marina, 34, 425-428. https://doi.org/10.1515/botm.1991.34.5.425
- [52]. Siddik, A., & Satheesh, S. (2019). Characterization and assessment of barnacle larval settlement-inducing activity of extracellular polymeric substances isolated from marine biofilm bacteria. Scientific Reports, 9(1), 17849. https://doi.org/10.1038/s41598-019-54294-9 PMID:31780773
- [53]. Siless, G. E., García, M., Pérez, M., Blustein, G., & Palermo, J. A. (2018). Large-scale purification of pachydictyol A from the brown alga Dictyota dichotoma obtained from algal wash and evaluation of its antifouling activity against the freshwater mollusk Limnoperna fortunei. Journal of Applied Phycology, 30(1), 629-636. https://doi.org/10.1007/s10811-017-1261-9
- [54]. So, C. R., Fears, K. P., Leary, D. H., Scancella, J. M., Wang, Z., Liu, J. L., Orihuela, B., Rittschof, D., Spillmann, C. M., & Wahl, K. J. (2016). Sequence basis of barnacle cement nanostructure is defined by proteins with silk homology. Scientific Reports, 6, 36219. https://doi.org/10.1038/srep36219 PMID:27824121
- [55]. Stabili, L., Acquaviva, M. I., Biandolino, F., Cavallo, R. A., De Pascali, S. A., Fanizzi, F. P., Narracci, M., Petrocelli, A., & Cecere, E. (2012). The lipidic extract of the seaweed Gracilariopsis longissima (Rhodophyta, Gracilariales): A potential resource for biotechnological purposes? New Biotechnology, 29(3), 443-450. https://doi.org/10.1016/j.nbt.2011.11.003 PMID:22100430
- [56]. Takahashi, K. (2009). Release rate of biocides from antifouling paints. In T. Arai, H. Harino, M. Ohji, & W. J. Langston (Eds.), Ecotoxicology of Antifouling Biocides (pp. 3-22)., https://doi.org/10.1007/978-4-431-85709-9_1
- [57]. Tian, L., Yin, Y., Bing, W., & Jin, E. (2021). Antifouling technology trends in marine environmental protection. Journal of Bionic Engineering, 18(2), 239-263. https://doi.org/10.1007/s42235-021-0017-z PMID:33815489
- [58]. Viano, Y., Bonhomme, D., Camps, M., Briand, J. F., Ortalo-Magné, A., Blache, Y., Piovetti, L., & Culioli, G. (2009). Diterpenoids from the Mediterranean brown alga Dictyota sp. evaluated as antifouling substances against a marine bacterial biofilm. Journal of Natural Products, 72(7), 1299-1304. https://doi.org/10.1021/np900102f PMID:19548693
- [59]. Vinagre, P. A., Simas, T., Cruz, E., Pinori, E., & Svenson, J. (2020). Marine biofouling: A European database for the marine renewable energy sector. Journal of Marine Science and Engineering, 8(7), 495. https://doi.org/10.3390/jmse8070495
- [60]. Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics (Oxford, England), 35(6), 1067-1069. https://doi.org/10.1093/bioinformatics/bty707 PMID:30165565
- [61]. Yebra, D. M., Kiil, S., & Dam-Johansen, K. (2004). Antifouling technology—Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 50(2), 75-104. https://doi.org/10.1016/j.porgcoat.2003.06.001
- [62]. Zhang, J., Liang, Y., Wang, K. L., Liao, X. J., Deng, Z., & Xu, S. H. (2014). Antifouling steroids from the South China Sea gorgonian coral Subergorgia suberosa. Steroids, 79, 1-6. https://doi.org/10.1016/j.steroids.2013.10.007 PMID:24184487
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30029f84-2a61-44b6-b198-79f091b74350