Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
River intermittence was studied based on data from hydrological monitoring in Poland. We screened the entire state database and two another data sources applying the criterion for zero-flow event: discharge less than 0.0005 m3∙s-1, and found five intermittent rivers with catchment area from 9.2 to 303.7 km2. We aimed at finding associations between intermittence and climatic driving forces (temperature and precipitation), and between intermittence and anthropogenic activity. We used the Spearman correlation coefficient, circular statistics, and statistical tests for trend. The concentration of zero-flow days, mostly in summer, and the decreasing trend in the standardised precipitation evapotranspiration index (SPEI) in all catchments at various aggregation levels, and an increasing trend in the total number of zero-flow days and in the maximum length of zero flow events in two rivers, were detected. The strong negative correlation (–0.62 ≤ ρ < 0) between intermittence and the SPEI backward lagged in time showed that intermittence resulted from prolonged deficits in climatic water balance due to increasing evapotranspiration. The reaction of the Noteć catchment, amplified by the anthropogenic pressure (brown coal mines), was reflected in the atypical shape of the rose diagram and in inhomogeneities in river discharges. The results show that the rose diagram can serve as an indicator of the degree of anthropogenic impact on runoff conditions.
Wydawca
Czasopismo
Rocznik
Tom
Strony
52--61
Opis fizyczny
Bibliogr. 36 poz., mapy, rys., tab., wykr.
Twórcy
autor
- University of Agriculture in Krakow, Department of Applied Mathematics, Balicka St, 253C, 30-198 Kraków, Poland
autor
- Institute of Geophysics Polish Academy of Sciences, Warsaw, Poland
autor
- Jagiellonian University in Kraków, Institute of Geography and Spatial Management, Kraków, Poland
autor
- Warsaw University of Life Sciences – SGGW, Department of Water Engineering and Applied Geology, Warsaw, Poland
- Institute of Technology and Life Sciences – National Research Institute, Falenty, Poland
autor
- Jagiellonian University in Kraków, Institute of Geography and Spatial Management, Kraków, Poland
Bibliografia
- Agostinelli, C. and Lund, U. (2017) R package circular: Circular Statistics (version 0.4-93). CA: Department of Environmental Sciences, Informaticsand Statistics, Ca' Foscari University, Venice, Italy. UL: Department of Statistics, California Polytechnic State University, San Luis Obispo, California, USA. Available at: https://cran.r-project.org/src/contrib/Archive/circular/ (Accessed: June 2, 2022).
- Banasik, K. et al. (2019) “Intermittence of streamflow from a small lowland watershed in Poland”, in AGU Fall Meeting Abstracts, 2019, pp. NH23B–1011.
- Bayliss, A. and Jones, R. (1993) Peaks-Over-Threshold Flood database: Summary statistics and seasonality. Wallingford: Institute of Hydrology.
- Bąk, B. and Łąbędzki, L. (2002) “Assessing drought severity with the relative precipitation index and the standardised precipitation index,” Journal of Water and Land Development, 6, pp. 89–105.
- Burn, D.H. (1997) “Catchment similarity for regional flood frequency analysis using seasonality measures,” Journal of Hydrology, 202 (1–4), pp. 212–230. Available at: https://doi.org/10.1016/s0022-1694(97)00068-1.
- Castellarin, A., Burn, D.H. and Brath, A. (2001) “Assessing the effectiveness of hydrological similarity measures for flood frequency analysis,” Journal of Hydrology, 241(3–4), pp. 270–285. Available at: https://doi.org/10.1016/S0022-1694(00)00383-8.
- Cucconi O. (1968) “Un nuovo test non parametrico per il confronto tra due gruppi campionari [A new nonparametric test for comparing two sample groups],” Giornale degli Economisti e Annali di Economia, 27, pp. 225–248.
- Delso, J., Magdaleno, F. and Fernandez-Yuste, J. (2017) “Flow patterns in temporary rivers: A methodological approach applied to southern Iberia,” Hydrological Sciences Journal, 62(10), pp. 1551–1563. Available at: https://doi.org/10.1080/02626667.2017.1346375.
- Fisher, N. (1993) Statistical analysis of circular data. Cambridge: Cambridge University Press, UK.
- Kendall, M. (1938) “A new measure of rank correlation,” Biometrika, 30(1/2), pp. 81–93. Available at: https://doi.org/10.2307/2332226.
- Kubiak-Wójcicka, K. (2020) “Variability of air temperature, precipitation and outflows in the Vistula Basin (Poland),” Resources, 9(9), 103. Available at: https://doi.org/10.3390/resources9090103.
- Krajewski, A. et al. (2019) “Long-term changes of hydrological variables in a small lowland watershed in Central Poland,” Water, 11, 564. Available at: https://doi.org/10.3390/w11030564.
- Krajewski, A. et al. (2021) “An attempt to decompose the impact of land use and climate change on annual runoff in a small agricultural catchment,” Water Resources Management, 35, pp. 881–896. Available at: https://doi.org/10.1007/s11269-020-02752- 9.
- Laaha, G. and Blöschl, G. (2006) “Seasonality indices for sregionalising low flows”, Hydrological Processes, 20, pp. 3851–3878. Available at: https://doi.org/10.1002/hyp.6161.
- Laaha, G. et al. (2016) “A three-pillar approach to assessing climate impacts on low flows,” Hydrology and Earth System Sciences, 20(9), pp. 3967–3985.
- Lepage, Y. (1971) “A combination of Wilcoxons and Ansari-Bradleys statistics,” Biometrika, 58(1), pp. 213–217. Available at: https://doi.org/10.2307/2334333.
- Mann, H. (1945) “Nonparametric test against trend,” Econometrica, 13(3), pp. 245–259. Available at: https://doi.org/10.2307/1907187.
- Mardia, K. and Jupp, P. (2000) Directional statistics. Chichester: John Wiley&Sons.
- Marozzi, M. (2013) “Nonparametric simultaneous tests for location and scale testing: A comparison of several methods,” Communications in Statistics – Simulation and Computation, 42(6), pp. 1298–1317. Available at: https://doi.org/10.1080/03610918.2012.665546.
- Mostowik, K. et al. (2019). “Runoff trends in a changing climate in the Eastern Carpathians (Bieszczady Mountains, Poland),” Catena, 182, 104174. Available at: https://doi.org/10.1016/j.catena.2019.104174.
- Okoniewska, M. and Szumińska, D. (2020) “Changes in potential evaporation in the years 1952–2018 in North-Western Poland in terms of the impact of climatic changes on hydrological and hydrochemical conditions,” Water, 12, 877. Available at: https://doi.org/10.3390/w12030877.
- Palmer, M.A. and Hondula, K.L. (2014) “Restoration as mitigation: Analysis of stream mitigation for coal mining impacts in Southern Appalachia,” Environmental Science & Technology, 48(18), pp. 10552–10560. Available at: https://doi.org/10.1021/es503052f.
- Parajka J. et al. (2009) “Comparative analysis of the seasonality of hydrological characteristics in Slovakia and Austria,” Hydrological Sciences Journal, 54(3) pp. 456–473.
- PGW Wody Polskie (2018) Drought Effects Counteracting Plan (DECP). Available at: https://stopsuszy.pl/en/ (Accessed: June 2, 2022).
- Przybyłek, J. (2018) „Aktualne problemy odwadniania złóż węgla brunatnego w Wielkopolsce [Current problems of the lignite open cast mines dewatering in the Wielkopolska region],” Górnictwo Odkrywkowe, 2, pp. 5–14.
- R Core Team (2021) R: A Language and Evironment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: https://www.R-project.org/ (Accessed: May 10, 2022).
- Rutkowska, A. and Banasik, K. (2016) “The Cucconi test for location-scale alternatives in application to asymmetric hydrological variables,” Communications in Statistics – Simulation and Computation, 45(3), pp. 986–1000. Available at: https://doi.org/10.1080/03610918.2014.911897.
- Rutkowska, A., Kohnová, S. and Banasik, K. (2018) “Probabilistic properties of the date of maximum river ow, an approach based on circular statistics in lowland, highland and mountainous catchment,” Acta Geophysica, 66(4), pp. 755–768. Available at: https://doi.org/10.1007/s11600-018-0139-9.
- Sauquet E. et al. (2021) “Classification and trends in intermittent river flow regimes in Australia, northwestern Europe and USA: A global perspective,” Journal of Hydrology, 597, 126170. Available at: https://doi.org/10.1016/j.jhydrol.2021.126170.
- Somorowska, U. (2016) “Changes in drought conditions in Poland over the past 60 years evaluated by the Standardized Precipitation-Evapotranspiration Index,” Acta Geophysica, 64(6), pp. 2530–2549. Available at: https://doi.org/10.1515/acgeo-2016-0110.
- Tramblay, Y. et al. (2021) “Trends in flow intermittence for European rivers,” Hydrological Sciences Journal, 66(1), pp. 37–49. Available at: https://doi.org/10.1080/02626667.2020.1849708.
- Tsagris M. et al. (2021) Directional: A collection of functions for directional data analysis. R package version 4.9. Available at: https://cran.r-project.org/src/contrib/Archive/Directional/ (Accessed: May 10, 2022).
- Vicente-Serrano, S., Begueria, S. and Lopez-Moreno, J.I. (2010) “A multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index,” Journal of Climate, 23, pp. 1696–1718. Available at: https://doi.org/10.1175/2009JCLI2909.1.
- Vicente-Serrano, S. et al. (2015) “Contribution of precipitation and reference evapotranspiration to drought indices under different climates,” Journal of Hydrology, 526, pp. 42–54. Available at: https://doi.org/10.1016/j.jhydrol.2014.11.025.
- Wachowiak, G. (2015) “Bilans wodny zbiornika w zalewanym wyrobisku końcowym likwidowanej odkrywki “Lubstów” PAK Kopalnia Węgla Brunatnego Konin S.A. [Water balance of a reservoir in the flooded, abandoned, open pit “Lubstów” PAK Lignite Opencast Mine Konin s.a.],” Górnictwo Odkrywkowe, 56(6) pp. 68–79.
- Wibig, J. (2012) „Warunki wilgotnościowe w Polsce w świetle wskaźnika standaryzowanego klimatycznego bilansu wodnego [Moisture conditions in Poland in view of the SPEI index],” Woda-Środowisko-Obszary Wiejskie, 12(2), pp. 329–340.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2fff1cab-9924-47a9-9ace-5e6253dab463