Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper is devoted to the design, simulation, and optimization of a robotic cell designed to machining printed circuit boards (PCBs) using a stationary milling machine mounted on an industrial robot. The main goal was to create a digital model of the production workplace in the RobotStudio environment, which allows testing robot movements, program logic, and functional arrangement of the entire system prior to physical implementation. The use of offline programming reduces costs and risks, enables rapid tuning of robot paths, and minimizes collision states. An important part of the design was the creation of a custom gripper made by 3D printing. This gripper combines vacuum suction cups with pneumatic clamping, which allows gentle manipulation of PCBs without damaging electronic components. The created cell model includes a conveyor system, a milling machine, a protective Plexiglas cover, and a camera to recognize PCB types. The simulation confirmed the functionality of the entire cycle, the optimized length of which is 56.58 s. The results show the potential of digital design for automated manufacturing cells and open the space for future research in the field of effectors, advanced control, and artificial intelligence in industrial automation.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
433--442
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- Slovak University of Technology in Bratislava Faculty of Informatics and Information Technologies Institute of Informatics, Information Systems and Software Engineering Ilkovičova 6276/2, 842 16 Bratislava 4, Slovakia
autor
- Technical University in Zvolen Faculty of Technology Department of Manufacturing and Automation Technology Studentska 26, 960 01 Zvolen, Slovakia
autor
- Slovak University of Technology in Bratislava Faculty of Electrical Engineering and Information Technology Institute of Robotics and Cybernetics Ilkovičova 3, 841 04 Bratislava, Slovakia
Bibliografia
- [1] S.P. Sethi, C. Sriskandarajah, G. Sorger, J. Blazewicz and W. Kubiak, “Sequencing of parts and robot moves in a robotic cell”. International Journal of Flexible Manufacturing Systems, vol. 4, no. 3-4, 1992, doi: 10.1007/BF01324886.
- [2] Y. Crama and J. Van De Klundert, “Cyclic scheduling of identical parts in a robotic cell”, Oper Res, vol. 45, no. 6, 1997, doi: 10.1287/opre.45.6.952.
- [3] P.M. Bhatt et al., “A robotic cell for multi-resolution additive manufacturing”, in Proceedings – IEEE International Conference on Robotics and Automation, 2019. doi: 10.1109/ICRA.2019.8793730.
- [4] H.B. Huang, D. Sun, J.K. Mills and S.H. Cheng, “Robotic cell injection system with position and force control: Toward automatic batch biomanipulation”, IEEE Transactions on Robotics, vol. 25, no. 3, 2009, doi: 10.1109/TRO.2009.2017109.
- [5] Z. Chi, Q. Xu, and L. Zhu, “A review of recent advances in robotic cell microinjection”, IEEE Access, vol. 8. 2020. doi: 10.1109/ACCESS.2020.2964305.
- [6] J. Carlier, M. Haouari, M. Kharbeche and A. Moukrim, “An optimization-based heuristic for the robotic cell problem”, Eur J Oper Res, vol. 202, no. 3, 2010, doi: 10.1016/j.ejor.2009.06.035.
- [7] J. Norberto Pires, “New challenges for industrial robotic cell programming”, Industrial Robot: An International Journal, vol. 36, no. 1, 2009, doi: 10.1108/ir.2009.04936aaa.002.
- [8] S. Shafiei-Monfared, K. Salehi-Gilani, and K. Jenab, “Productivity analysis in a robotic cell”, Int J Prod Res, vol. 47, no. 23, 2009, doi: 10.1080/00207540802372298.
- [9] P.M. Bhatt, A.M. Kabir, M. Peralta, H.A. Bruck and S.K. Gupta, “A robotic cell for performing sheet lamination-based additive manufacturing”, Addit Manuf, vol. 27, 2019, doi: 10.1016/j.addma.2019.02.002.
- [10] I.G. Drobouchevitch, S.P. Sethi and C. Sriskandarajah, “Scheduling dual gripper robotic cell: One-unit cycles”, Eur J Oper Res, vol. 171, no. 2, 2006, doi: 10.1016/j.ejor.2004.09.019.
- [11] A. Balasubramanian, “Arduino UNO 3D model”, https://grabcad.com/library/arduino-uno-3dmodel-1.
- [12] A. Robotics, “Product specification RobotStudio”, 2018.
- [13] A. A. Robotics, “Product specification IRB 120 IRC5”, Västerås Sweden.
- [14] A. Robotics, “Operating manual RobotStudio”, 2018.
- [15] I.S. Jawahir and O.W. Dillon Jr, “Sustainable manufacturing processes: new challenges for developing predictive models and optimization techniques”, In Proceedings of the first international conference on sustainable manufacturing, pp. 1–19, 2007.
- [16] A.D. Jayal, F. Badurdeen, O.W. Dillon and I.S. Jawahir, “Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels”, CIRP J Manuf Sci Technol, vol. 2, no. 3, 2010, doi: 10.1016/j.cirpj.2010.03.006.
- [17] R. Logendran and C. Sriskandarajah, “Sequencing of robot activities and parts in two-machine robotic cells”, Int J Prod Res, vol. 34, no. 12, 1996, doi: 10.1080/00207549608905099.
- [18] S.C. Daminabo, S. Goel, S.A. Grammatikos, H.Y. Nezhad and V.K. Thakur, “Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems”, Materials Today Chemistry, vol. 16. 2020. doi: 10.1016/j.mtchem.2020.100248.
- [19] J.P. Kruth, M.C. Leu and T. Nakagawa, “Progress in additive manufacturing and rapid prototyping”, CIRP Ann Manuf Technol, vol. 47, no. 2, 1998, doi: 10.1016/S0007-8506(07)63240-5.
- [20] G. Chryssolouris, N. Papakostas and D. Mavrikios, “A perspective on manufacturing strategy: Produce more with less”, CIRP J Manuf Sci Technol, vol. 1, no. 1, 2008, doi: 10.1016/j.cirpj.2008.06.008.
- [21] P.J. Sincák, I. Virgala, M. Kelemen, E. Prada, Z. Bobovsky and T. Kot, “Chimney Sweeping Robot Based on a Pneumatic Actuator”, Applied sciences-basel, vol. 11, issue 11, 2021, doi: 10.3390/app11114872.
- [22] M. Tóthová, J. Piteľ and J. Mizáková, “Electro-Pneumatic Robot Actuator with Artificial Muscles and State Feedback”, Design, testing and characteristics of mechatronic devices, Applied Mechanics and Materials, vol. 460, 2014, doi: 10.4028/www.scientific.net/AMM.460.23.
- [23] M. Blatnicky, J. Dizo, J. Gerlici, M. Sága, T. Lack and E. Kuba, “Design of a robotic manipulator for handling products of automotive industry”, International journal of advanced robotic systems, vol. 17, issue 1, 2020, doi: 10.1177/1729881420906290.
- [24] D. Fedorova, V. Tlach, I. Kuric, T. Dodok, I. Zajacko and K. Tucki, “Technical Diagnostics of Industrial Robots Using Vibration Signals: Case Study on Detecting Base Unfastening”, Applied sciences-basel, vol. 15, issue 1, 2025, doi: 10.3390/app15010270.
- [25] S. Sebastian, “Implementing robotics and artificial intelligence”, Elife, vol. 11, 2022, doi: 10.7554/ELIFE.80609.
- [26] I. Kuric, V. Tlach, M. Sága, M. Císar and I. Zajacko, “Industrial Robot Positioning Performance Measured on Inclined and Parallel Planes by Double Ballbar”, Applied sciences-basel, vol. 11, issue 4, 2021, doi: 10.3390/app11041777.
- [27] P. Bozek, Z. Ivandic, A. Lozhkin, V. Lyalin and V. Tarasov, “Solutions to the characteristic equation for industrial robot’s elliptic trajectories”, Tehnicki vjesnik-technical gazette, vol. 23, issue 4, 2016, doi: 17559/TV-20150114112458.
- [28] C.J. Lin and R.P. Lukodono, “Sustainable human-robot collaboration based on human intention classification”, Sustainability, vol. 13, no. 11, 2021, doi: 10.3390/su13115990.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ffcc5fb-8adb-42b2-b8ce-46a3bf30d52b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.