PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parameters of LC molecules’ movement measured by dielectric spectroscopy in wide temperature range

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dielectric properties of a nematic liquid crystal (NLC) mixture ZhK-1282 were investigated in the frequency range of 10²–10⁶Hz and a temperature range of -20 to 80°C. On the basis of the Debye’s relaxation polarization model dielectric spectra of temperature dependence of the orientational relaxation time τ and the dielectric strength δe were numerically approximated at the parallel orientation of a molecular director relative to alternating electric field. Influence of ester components in the mixture plays crucial role in relaxation processes at low temperature and external field frequency. The activation energy of the relaxation process of a rotation of molecules around their short axis was measured in a temperature interval of -20 to +15°C in which the dispersion of a longitudinal component of the dielectric constant takes place. The energy of potential barrier for polar molecules rotation in the mesophase was calculated. The value of the transition entropy from the nematic to isotropic phase was obtained from this calculation. The values of the coefficient of molecular friction and rotational diffusion were obtained by different methods. The experimental data obtained are in a satisfactory agreement with the existing theoretical models.
Twórcy
  • Moscow Region State University (MRSU), 10a Radio Str., 105005 Moscow, Russia
  • Moscow Region State University (MRSU), 10a Radio Str., 105005 Moscow, Russia
  • Moscow Technological University, 78 Vernadskogo Ave., 119454, Moscow, Russia
  • Moscow Region State University (MRSU), 10a Radio Str., 105005 Moscow, Russia
  • Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Str., 117198, Moscow, Russia
autor
  • Raman Research Institute, C.V. Raman Avenue, Sadashivanagar, Near Mekhri Circle, Bengaluru, Karnataka 560080, India
Bibliografia
  • [1] J. Jadzyn, S. Czerkas, G. Czechowski, A. Burczyk, On the molecular interpretation of the static dielectric properties of nematic liquid crystals, Liquid Cryst. 26 (1999) 437–442.
  • [2] S. Całus, L. Borowik, A.V. Kityk, M. Eich, M. Busch, P. Huber, Thermotropic interface and core relaxation dynamics of liquid crystals in silica glass nanochannels: a dielectric spectroscopy study, Phys. Chem. Chem. Phys. 34 (2015) 22115–22124.
  • [3] M. Mrukiewicz, P. Perkowski, K. Garbat, R. Dąbrowski, Molecular relaxations in dual-frequency nematic liquid crystals, Liquid Cryst. 41 (2014) 1537–1544.
  • [4] D.P. Singh, S.K. Gupta, S. Pandey, T. Vimal, P. Tripathi, M.C. Varia, S. Kumar, S. Manohar, R. Manohar, Influence of CdSe quantum dot on molecular/ionic relaxation phenomenon and change in physical parameters of ferroelectric liquid crystal, Liquid Cryst. 42 (2015) 1159–1168.
  • [5] S. Urban, Fluorosubstituted nematogens with high positive or high negative dielectric anisotropies enabling formulation mixtures useful for various applications, in: 14th European Conference on Liquid Crystals (ECLC 2017), Moscow, Russia, 25-30 June 2017, 2017, p. O1.
  • [6] R. Dąbrowski, M. Celinski, O. Chojnowska, P. Kula, J. Dziaduszek, S. Urban, Compounds with low relaxation frequency and dual frequency mixtures useful for active matrix addressing, Liquid Cryst. 40 (2013) 1339–1353.
  • [7] M. Mrukiewicz, P. Perkowski, K. Garbat, Dielectric behaviour of binary dual-frequency nematics with low crossover frequencies, Liquid Cryst. 42 (2015) 1036–1042.
  • [8] F. Al-Hazmi, A.A. Al-Ghamdi, N. Al-Senany, F. Alnowaiser, F. Yakuphanoglu, Dielectric anisotropy and electrical properties of the copper phthalocyanine (CuPc): 4-4’-n-Heptylcyanobiphenyl (7CB) composite liquid crystals, Compos. Part B: Eng. 56 (2014) 15–19.
  • [9] R.K. Shukla, J. Mirzaei, A. Sharma, D. Hofmann, T. Hegmann, W. Haase, Electro-optic and dielectric properties of a ferroelectric liquid crystal doped with chemically and thermally stable emissive carbon dots, RSC Adv. 43 (2015) 34491–34496.
  • [10] P. Perkowski, Numerical elimination methods of ITO cell contribution to dielectric spectra of ferroelectric liquid crystals, Opto-Electron. Rev. 19 (2011) 176–182.
  • [11] C. Legrand, 8CB liquid crystal doped with Sn₂P₂S₆ ferroelectric nanoparticles:dielectric properties in correlation with phase transition temperatures, in: 14th European Conference on Liquid Crystals (ECLC 2017), Moscow, Russia, 25-30 June 2017, 2017, p. O37.
  • [12] R. Verma, R. D˛abrowski, R. Dhar, Thermodynamic, electrical and electro-optical features of the racemic mixture of an antiferroelectric liquid crystal suitable for displays, Liquid Cryst. 42 (2015) 1785–1797.
  • [13] J. Fitas, M. Marzec, K. Kurp, M.Żurowska, M. Tykarska, A. Bubnov, Electro-optic and dielectric properties of new binary ferroelectric and antiferroelectric liquid crystalline mixtures, Liquid Cryst. 44 (2017) 1468–1476.
  • [14] F. Peng, Y. Chen, J. Yuan, H. Chen, S.T. Wu, Y. Haseba, Low temperature and high frequency effects on polymer-stabilized blue phase liquid crystals with large dielectric anisotropy, J. Mater. Chem. C 18 (2014) 3597–3601.
  • [15] Y. Chen, S.T. Wu, Recent advances on polymer-stabilized blue phase liquid crystal materials and devices, J. Appl. Polym. Sci. 131 (2014) 40556.
  • [16] S.-T. Wu, D.-K. Yang, Fundamentals of Liquid Crystal Devices, John Wiley & Sons, 2006.
  • [17] S. Gauza, C.-H. Wen, B. Wu, S.-T. Wu, A. Spadlo, R. Dąbrowski, Fast-response nematic liquid-crystal mixtures, J. SID 14 (2006) 241–246.
  • [18] Y.C. Hsiao, I.V. Timofeev, V.Y. Zyryanov, W. Lee, Hybrid anchoring for a color-reflective dual-frequency cholesteric liquid crystal device switched by low voltages, Optic. Mater. Express 11 (2015) 2715–2720.
  • [19] S. Krishna Prasad, P. Lakshmi Madhuri, U.S. Hiremath, C.V. Yelamaggad, A photo-driven dual-frequency addressable optical device of banana-shaped molecules, Appl. Phys. Lett. 104 (2014) 111906.
  • [20] V.F. Petrov, M.F. Grebenkin, M.I. Barnik, V.V. Belyaev, Liquid Crystal Material for Electro-optical devices, in: USSR Invention Certificate, 1985, pp. 1295732 (In Russian).
  • [21] S. Urban, B. Gestblom, H. Kresse, R. D˛abrowski, Dielectric Relaxation Studies of 4-n-Alkyloxy-4’-Cyanobiphenyls (nOCB, n 5-8), Zeitschrift für Naturforschung A 51 (1996) 834–842.
  • [22] V. Jayalakshmi, G.N. Geetha, P.S. Krishna, Kinetics of the thermal back relaxation time of the photoinduced nematic-isotropic transition, Phys. Rev. E 75 (2007) 031710.
  • [23] K. Brindaban, R. Pratibha, N.V. Madhusudana, Anomalous temperature dependence of elastic constants in the nematic phase of binary mixtures made of rodlike and bent-core molecules, Phys. Rev. Lett. 99 (2007) 247802.
  • [24] S. Pawlus, M. Mierzwa, M. Paluch, S.J. Rzoska, C.M. Roland, Dielectric and mechanical relaxation in isooctylcyanobiphenyl (8OCB), J. Phys.: Cond. Matter 22 (2010) 235101.
  • [25] W.G. Fano, V. Trainotti, Dielectric Properties of Soils, 2001 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (2001) 75–78.
  • [26] P. Debye, Polar Molecules, Chem. Catalog Company 18 (1929) 89–95.
  • [27] M. Mrukiewicz, P. Perkowski, K. Garbat, R. D˛abrowski, J. Parka, Dielectric Properties of Compounds Creating Dual-Frequency Nematic Liquid Crystals, Acta Physica Polonica A 124 (2013) 940–945.
  • [28] P. Perkowski, M. Mrukiewicz, M. Laska, K. Garbat, W. Piecek, R. Dąbrowski, Dielectric behavior of dual-frequency nematic at extra low temperatures, Phase Trans. 86 (2013) 113–122.
  • [29] S. Urban, P. Kula, A. Spadlo, M. Geppi, A. Marini, Dielectric properties of selected laterally fluoro-substituted 4, 4-dialkyl, dialkoxy and alkyl-alkoxy [1:1’;4’:1]terphenyls, Liquid Cryst. 37 (2010) 1321–1330.
  • [30] B.R. Ratna, R. Shashidhar, Dielectric dispersion in4’-n-alkyl-4-vyanobiphyenyls, Mol. Cryst. Liquid Cryst. 42 (1977) 185–192.
  • [31] H. Fröhlich, Theory of Dielectrics, in: Dielectric Constant and Dielectric Loss, Clarendon Press, Oxford, 1949.
  • [32] V.B. Nemtsov, Molecular-statistical calculations of the viscosity coefficients of NLC, Theor. Appl. Mech. 12 (1985) 111–114 (in Russian).
  • [33] V.V. Belyaev, V.B. Nemtsov, Molecular friction and rotational viscosity of nematic liquid crystals, Russ. J. Phys. Chem. 66 (1992) 1471–1476.
  • [34] L. Bata, A. Buka, G. Molnar, Rotary motion of molecules about their short axis by dielectric and splay viscosity measurements, Mol. Cryst. Liquid Cryst. 38(1977) 155–162.
  • [35] W. Maier, A. Saupe, Eine einfache molekulare Theorie des nematischen kristallinflüssigen Zustandes, Zeitschrift für Naturforschung 13a (1958) 564–566.
  • [36] W. Maier, A. Saupe, Eine einfache molecular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil I, Zeitschrift für Naturforschung 14a (1959) 882–889.
  • [37] W. Maier, A. Saupe, Eine einfache molecular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil II, Zeitschrift für Naturforschung 15a (1960) 287–292.
  • [38] P. Esnault, F. Volino, A.F. Martins, S. Kumar, A. Blumstein, The twist viscosity coefficient of a main-chain nematic polymer: temperature and molecular mass dependences, Mol. Cryst. Liquid Cryst. 153 (1987) 143–161.
  • [39] A.C. Diogo, A.F. Martins, Thermal behaviour of the twist viscosity in a series of homologous nematic liquid crystals, Mol. Cryst. Liquid Cryst. 66 (1981) 133–146.
  • [40] V.V. Belyaev, Viscosity of Nematic Liquid Crystals, International Science Press, Cambridge, 2010.
  • [41] N. Kuzuu, M. Doi, Constitutive equation for nematic liquid crystals under weak velocity gradient derived, J. Phys. Soc. Jpn. 52 (3486) (1983).
  • [42] V.V. Belyaev, V.B. Nemtsov, Molecular friction and rotational viscosity of nematic liquid crystals, J. Phys. Chem. 66 (1992) 2763–2772 (in Russian).
  • [43] R.Y. Dong, G.M. Richards, Deuterium spin relaxation in a ring-deuterated smectic liquid crystal, Mol. Cryst. Liquid Cryst. 141 (1986) 335–347.
  • [44] X. Shen, R.Y. Dong, A comparative study of dynamics in the nematic and reentrant-nematic phases of 60CB and 60CB/80CB mixture by deuteron nuclear magnetic resonance relaxation, J. Chem. Phys. 108 (1998) 9177–9185.
  • [45] A.J. Leadbetter, F.P. Temme, A. Heidemann, W.S. Howells, The self-diffusion tensor for two nematic liquid crystals from incoherent quasi-elastic neutron scattering at low momentum transfer, Chem. Phys. Lett. 34 (1975) 363–368.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ff5379a-2611-46fc-aa7d-23b0124370e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.