PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

BIM-based process management model for building design and refurbishment

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A conceptual model of BIM-based design and refurbishment, based on pre-built indicators and allowing the assessment of the building energy demand and eco-building parameters, is presented. The new approach presented in this model creates a knowledge-based decision-making environment for refurbishment strategies and quality control, in this way creating the preconditions to bridge the gap between expected and actual energy performance. The model with integration of new BIM-based optimization subsystems enables energy management and optimization processes. For a comprehensive evaluation of refurbishment measures, it is suggested to include energy efficiency, eco-efficiency, and economic parameters.
Rocznik
Strony
1136--1149
Opis fizyczny
Bibliogr. 41 poz., fot., rys., tab.
Twórcy
  • Vilnius Gediminas Technical University, Faculty of Civil Engineering, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
autor
  • Vilnius Gediminas Technical University, Faculty of Civil Engineering, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
  • Vilnius Gediminas Technical University, Faculty of Civil Engineering, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
  • Vilnius Gediminas Technical University, Faculty of Civil Engineering, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
autor
  • Klaipėda University, Faculty of Marine Technology and Natural Sciences, Bijūnų str. 17, LT-91225 Klaipėda, Lithuania
  • Bialystok University of Technology, Faculty of Civil and Environmental Engineering, Wiejska 45E, PL-15351 Bialystok, Poland
Bibliografia
  • [1] E. Guzman Garcia, Z. Zhu, Interoperability from building design to building energy modeling, J. Build. Eng. 1 (2015) 33–41.
  • [2] D. Bryde, M. Broquetas, J.M. Volm, The project benefits of Building Information Modelling (BIM), Int. J. Project Manage. 31 (2013) 971–980.
  • [3] Y. Jung, M. Joo, Building information modelling (BIM) framework for practical implementation, Autom. Constr. 20 (2011) 126–133.
  • [4] K. Barlish, K. Sullivan, How to measure the benefits of BIM – a case study approach, Autom. Construct. 24 (2012) 149–159.
  • [5] K.H. Lee, I.H. Kim, S.Y. Choo, Model study of design components for energy-performance-based architectural design using BIM LOD 100, J. Green Build. 10 (2) (2015) 179–197.
  • [6] X. Li, P. Wu, G.Q. Shen, X. Wang, Y. Teng, Mapping the knowledge domains of Building Information Modeling (BIM): a bibliometric approach, Autom. Construct. 84 (2017) 195–206.
  • [7] C. Sun, S. Jiang, M.J. Skibniewski, Q. Man, L. Shen, A literature review of the factors limiting the application of BIM in the construction industry, Technol. Econ. Dev. Econ. 23 (5) (2017) 764–779.
  • [8] S.L. Fan, M.J. Skibniewski, T.W. Hung, Effects of building information modeling during construction, J. Appl. Sci. Eng. 17 (2) (2014) 157–166.
  • [9] S. Iqbal, R.M. Choudhry, K. Holschemacher, A. Ali, J. Tamošaitienė, Risk management in construction projects, Technol. Econ. Dev. Econ. 21 (1) (2015) 65–78.
  • [10] V. Popov, V. Juocevicius, D. Migilinskas, L. Ustinovichius, S. Mikalauskas, The use of a virtual building design and construction model for developing an effective Project concept in 5D environment, Autom. Construct. 19 (3) (2010) 357–367.
  • [11] D. Migilinskas, V. Popov, V. Juocevicius, L. Ustinovichius, The benefits, obstacles and problems of practical BIM implementation, Proc. Eng. 57 (2013) 767–774.
  • [12] B. Hola, Identification and evaluation of processes in a construction enterprise, Arch. Civil Mech. Eng. 15 (2015) 419–426.
  • [13] R. Volk, J. Stengel, F. Schultmann, Building Information Modeling (BIM) for existing buildings – literature review and future needs, Autom. Construct. 38 (2014) 109–127.
  • [14] L.A. Saoud, J. Omran, B. Hassan, T. Vilutienė, A. Kiaulakis, A method to predict change propagation within building information model, J. Civil Eng. Manage. 23 (6) (2017) 836–846.
  • [15] C. Merschbrock, A. Figueres-Munoz, Circumventing obstacles in digital construction design – a workaround theory perspective, Proc. Econ. Finance 21 (2015) 247–255.
  • [16] T.O. Olawumi, D.W. Chan, J.K. Wong, Evolution in the intellectual structure of BIM research: a bibliometric analysis, J. Civil Eng. Manage. 23 (8) (2017) 1060–1081.
  • [17] H.Y. Chong, C.Y. Lee, X. Wang, A mixed review of the adoption of Building Information Modelling (BIM) for sustainability, J. Clean. Prod. 142 (2017) 4114–4126.
  • [18] H. Kreiner, A. Passer, H. Wallbaum, A new systemic approach to improve the sustainability performance of office buildings in the early design stage, Energy Build. 109 (2015) 385–396.
  • [19] S. Sun, K. Kensek, D. Noble, M. Schiler, A method of probabilistic risk assessment for energy performance and cost using building energy simulation, Energy Build. 110 (2016) 1–12.
  • [20] L. Che, Z. Gao, D. Chen, T.H. Nguyen, Using building information modeling for measuring the efficiency of building energy performance, in: W. Tizani (Ed.), Computing in Civil and Building Engineering, Proceedings of the International Conference, Nottingham University Press, Nottingham, UK, 2010, 165, Paper 83.
  • [21] V. Bazjanac, Acquisition of building geometry in the simulation of energy performance, in: Presented at the 2001 Building Simulation Conference in Rio de Janeiro, Brazil on August 13–15, 2001.
  • [22] J. Baqersad, P. Poozesh, C. Niezrecki, P. Avitabile, Photogrammetry and optical methods in structural dynamics – a review, Mech. Syst. Signal Process. 86 (2017) 17–34.
  • [23] A. Dziadosz, A. Konczak, Review of selected methods of supporting decision-making process in the construction industry, Arch. Civil Eng. 62 (1) (2016) 111–126.
  • [24] E. Krawczyk-Dembicka, Process of technology management in SMEs of the metal processing industry – the case study investigation, Eng. Manage. Prod. Serv. 9 (1) (2017) 18–25.
  • [25] P. Nowak, S. Sklodkowski, Multicriteria of selected building thermal insulation solutions,Arch. Civil Eng. 62 (3) (2016) 137–148.
  • [26] A. Baran, Nanotechnology: legal and ethical issues, Econ. Manage. 8 (1) (2016) 47–54.
  • [27] R. Rasiulis, L. Ustinovichius, T. Vilutienė, V. Popov, Decision model for selection of modernization measures: public building case, J. Civil Eng. Manage. 22 (1) (2016) 124–133.
  • [28] J.K.-W. Wong, K.-L. Kuan, Implementing 'BEAM Plus' for BIMbased sustainability analysis, Autom. Construct. 44 (2014) 163–175.
  • [29] H.U. Gökçe, K.U. Gökçe, Multi dimensional energy monitoring, analysis and optimization system for energy efficient building operations, Sustain. Cities Soc. 10 (2014) 161–173.
  • [30] M. Li, J. Yang, Critical factors for waste management in office building retrofit projects in Australia, Resources, Conserv. Recycl. 93 (2014) 85–98.
  • [31] L. Gimenez, S. Robert, F. Suard, K. Zreik, Automatic reconstruction of 3D building models from scanned 2D floor plans, Autom. Construct. 63 (2016) 48–56.
  • [32] M.J. Skibniewski, Information technology applications in construction safety assurance, J. Civil Eng. Manage. 20 (6) (2014) 778–794.
  • [33] Y.-C. Lin, J.-X. Chang, Y.-C. Su, Developing construction defect management system using BIM technology in quality inspection, J. Civil Eng. Manage. 22 (7) (2016) 903–914.
  • [34] A. Czarnigowska, A. Sobotka, Time–cost relationship for predicting construction duration, Arch. Civil Mech. Eng. 13 (4) (2013) 518–526.
  • [35] B. Dong, Z. O'Neill, Z. Li, A BIM-enabled information infrastructure for building energy Fault Detection and Diagnostics, Autom. Construct. 44 (2014) 197–211.
  • [36] E. Plebankiewicz, K. Zima, D. Wieczorek, Life cycle cost modelling of buildings with consideration of the risk, Arch. Civil Eng. 62 (2) (2016) 149–166.
  • [37] R. Liaudanskiene, R. Simanaviciene, L. Ustinovichius, A model for solving structural, technological and safety problems, J. Civil Eng. Manage. 18 (1) (2012) 30–42.
  • [38] R. Simanaviciene, R. Liaudanskiene, L. Ustinovichius, A new synthesis method of structural, technological and safety decisions (SyMAD-3), J. Civil Eng. Manage. 18 (2) (2012) 265–276.
  • [39] J. Ejdys, A. Lulewicz-Sas, An OH&S management system as a source of information, Int. J. Occup. Saf. Ergon. 16 (4) (2010) 445–454.
  • [40] K. Araszkiewicz, Green BIM concept – Scandinavian inspirations, Arch. Civil Eng. 62 (1) (2016) 99–110.
  • [41] H.L. Chen, Innovation stimulants, innovation capacity, and the performance of capital projects, J. Bus. Econ. Manage. 15 (2) (2014) 212–231.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ff4a9c6-6c79-410a-9bc9-d5cd332ced03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.