PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Numerical simulation of shear wave attenuation in borehole inserted by a horizontal fracture

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The amplitude of shear waves is attenuated when passing through horizontal fractures crossing a borehole. In this study, we investigate the amplitude attenuation of shear waves throughout simulation of full-wave acoustic logging with the fnite-diference method. As the fracture aperture is very small, it needs to be represented in a very fne gird when carrying out fnite-diference simulation. Therefore, the variable-grids fnite-diference method is adopted to avoid over-sampling in the non-fracture regions, yielding substantial savings in computational cost. We demonstrate the accuracy of waveform modeling with the variable-grid fnite-diference by benchmarking against that obtained with the real-axis integrating method. We investigated the efects of several important parameters including fracture aperture, distance from receiver to fracture, borehole radius and extended distance utilizing that benchmarked variable-grid fnite diference code. We determined a good linear relationship between the attenuation coefcient of shear wave amplitude and the fracture aperture. Then, the efects of distance from receiver to fracture, the borehole radius and the extended distance of fracture on shear wave attenuation are also studied. The attenuation coefcient of shear wave becomes smaller with the increasing borehole radius. While, it increases as the distance from receiver to fracture and the extended distance of fracture increase. These efect characteristics are conducive to the use of shear wave to evaluate fractures.
Czasopismo
Rocznik
Strony
1715--1726
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • China University of Petroleum-Beijing At Karamay, Xinjiang, China
autor
  • The 54th Research Institute of China Electronics Technology Group, Shijiazhuang, China
  • Department of Earth Sciences, University of Bergen, Allegaten 41, 5020 Bergen, Norway
  • Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
  • Present Address: Total E&P UK, Tarland Road, Westhill, Aberdeen AB32 6JZ, UK
Bibliografia
  • 1. Aoi S, Fujiwara H (1999) 3D finite-difference method using discontinuous grids. Bull Seismol Soc Am 89(4):918–930
  • 2. Bakku SK, Fehler M, Burns D (2013) Fracture compliance estimation using borehole tube waves. Geophysics 78:D249–D260
  • 3. Chen Y, Chew W, Liu Q (1998) A three-dimensional finite difference code for the modeling of sonic logging tools. J Acoust Soc Am 103(2):702–712
  • 4. Falk J, Tessmer E, Gajewski D (1996) Tube wave modeling by the finite-difference method with varying grid spacing. Pure Appl Geophys 148(1–2):77–93
  • 5. Goldberg D, Gant WT (1988) Shear-wave processing of sonic log waveforms in a limestone reservoir. Geophysics 53(53):9
  • 6. Groenenboom J, Falk J (2000) Scattering by hydraulic fractures: finite-difference modeling and laboratory data. Geophysics 65:612–622
  • 7. Guan W, Hu H, He X (2009) Finite-difference modeling of the monopole acoustic logs in a horizontally stratified porous formation. J Acoust Soc Am 125(4):1942–1950
  • 8. Hornby BE, Johnson DL, Winkler KW, Plumb RA (1989) Fracture evaluation using reflected Stoneley-wave arrivals. Geophysics 54:1274–1288
  • 9. Kostek S, Johnson DL, Randall CJ (1998) The interaction of tube waves with borehole fractures. Part I Numer Models Geophys 63:800–808
  • 10. Kostek S, Johnson DL, Winkler KW, Hornby BE (1998) The interaction of tube waves with borehole fractures. Part II Anal Models Geophys 63:809–815
  • 11. Matuszyk PJ, Torres-Verdín C, Pardo D (2013) Frequency-domain finite-element simulations of 2D sonic wireline borehole measurements acquired in fractured and thinly bedded formations. Geophysics 78(4):D193–D207
  • 12. Minato S, Ghose R (2017) Low-frequency guided waves in a fluid-filled borehole:simultaneous effects of generation and scattering due to multiple fractures. J Appl Phys 121(10):104902
  • 13. Moczo P (1989) Finite-difference technique for SH-wave in 2-D media using irregular grids—application to the seismic response problem. Geophys J Int 99:321–329
  • 14. Morris RL, Grine DR, Arkfeld TE (1964) Using compressional and shear acoustic amplitudes for the location of fractures. J Pet Technol 16(6):623–632
  • 15. Paillet FL (1980) Acoustic propagation in the vicinity of fractures which intersect a fluid-filled borehole. SPWLA 21st Annual Logging Symposium, Society of Petrophysicists and Well-Log Analysts
  • 16. Randall CJ, Scheibner DJ, Wu PT (1991) Multipole borehole acoustic waveforms: synthetic logs with beds and borehole washouts. Geophysics 56(11):1757–1769
  • 17. Stephen RA, Pardo-Casas F, Cheng CH (1985) Finite-difference synthetic acoustic logs. Geophysics 50:1588–1609
  • 18. Tang XM, Cheng CH (1993) Borehole stoneley wave propagation across permeable structures. Geophys Prospect 41:165–187
  • 19. Tsang L, Rader D (1979) Numerical evaluation of the transient acoustic waveform due to a point source in a fluid-filled borehole. Geophysics 44:1706–1720
  • 20. Virieux J (1986) P-SV wave propagation in heterogeneous media: velocity–stress finite-difference method. Geophysics 51:889–901
  • 21. Wang T, Tang X (2003) Finite-difference modeling of elastic wave propagation: a nonsplitting perfectly matched layer approach. Geophysics 68(5):1749–1755
  • 22. Yan SG, Xie FL, Gong D, Zhang CG, Zhang BX (2015) Borehole acoustic fields in porous formation with thin fracture. Chin J Geophys 58:307–317
  • 23. Yan BP, Wang SX, Ji YZ, Huang XG, da Silva NV (2020) Frequency-dependent spherical-wave reflection coefficient inversion in acoustic media: theory to practice. Geophysics 85(4):R425–R435
  • 24. Zlatev P, Poeter E, Higgins J (1988) Physical modeling of the full acoustic waveform in a fractured, fluid-filled borehole. Geophysics 53(9):1219–1224
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ff1de4e-7471-434f-b85d-ec12a14423a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.