PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamics of the phenomenon of immiscible viscous fingering in porous media – experimental studies and model description

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Improvement of life quality, food production and sustainability requires search for better, efficient natural resources extracting methods, while minimizing environmental impact, which is determined by carbon and water footprint calculation. In order to counter global phenomena, it is necessary for food-producing chain to work together to take conscious action on environment. Restoring balance demands action to reduce greenhouse gas emissions and rational water use, by reducing energy intensive processes or increasing efficiency of wastewater treatment methods. This requires a thorough understanding of all phenomena that determine a given process. Viscous fingering occurs during such processes as enhanced oil recovery, metal crystallization in batteries, sugar refining, groundwater purification and many others. Research to improve knowledge of this phenomenon and ability to predict its effects is crucial in development of basic industrial processes. This paper presents an experimental study of tracking immiscible viscous fingering in modified Hele-Shaw cells filled with a granular bed of known parameters. The influence of bed parameters and flow conditions on the observed phenomenon was investigated. During the tests, beds with the following grain diameter ranges were used: 200–300, 300–400 and 400–600 μm; the liquid was injected at three different flow rates in the range of 100–400 ml/h. On the basis of carried out work, a model of the studied phenomenon was proposed, which made it possible to determine the extent and the fingering scale.
Rocznik
Strony
art. no. e69
Opis fizyczny
Bibliogr. 31 poz., wykr., tab., rys.
Twórcy
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Chemical Engineering, Wolczanska 213, 90-924 Lodz, Poland
  • Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology – State Research Institute, Department of Technology and Refrigeration Techniques in Lodz, Al. Marszałka J. Piłsudskiego 84, 92-202 Lodz, Poland
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Chemical Engineering, Wolczanska 213, 90-924 Lodz, Poland
  • Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology – State Research Institute, Department of Technology and Refrigeration Techniques in Lodz, Al. Marszałka J. Piłsudskiego 84, 92-202 Lodz, Poland
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Chemical Engineering, Wolczanska 213, 90-924 Lodz, Poland
Bibliografia
  • 1. Arguello M.E., Labanda N.A., Calo V.M., Gumulya M., Utikar R., Derksen J., 2022. Dendrite formation in rechargeable lithium-metal batteries: phase-field modeling using open-source finite element library. J. Energy Storage, 53, 104892. DOI: 10.1016/j.est.2022.104892.
  • 2. Belotserkovskaya M., Konyukhov A., 2010. Numerical simulation of viscous fingering in porous media. Phys. Scr., 142, 014056. DOI: 10.1088/0031-8949/2010/T142/014056.
  • 3. Carman P.C., 1937. Fluid flow through granular beds. Trans.IChemE., 15, 150–166.
  • 4. Doorwar S., Mohanty K.K., 2015. Fingering function for unstabl immiscible flows. SPE Reservoir Simulation Symposium, 23–25 February 2015 Houston, Texas, USA.
  • 5. Doorwar S., Mohanty K.K., 2017. Viscous-fingering function for unstable immiscible flows. SPE J., 22, 19–31. DOI: 10.2118/173290-PA.
  • 6. Dullien F.A.L., 1992. Porous media: Fluid transport and pore structure. Academic Press Inc.
  • 7. Jamaloei B.Y., 2021. Effect of wettability on immiscible viscous fingering: Part I. Mechanisms. Fuel, 304, 120726. DOI: 10.1016/j.fuel.2021.120726.
  • 8. Jamaloei B.Y., Babolmorad R., Kharrat R., 2016. Visualization and analysis of viscous fingering in alcohol-assisted surfactant waterflooding of heavy oil in a two-dimensional sandstone micro- model. Fuel, 184, 169–179. DOI: 10.1016/j.fuel.2016. 07.016.
  • 9. Jha B., Cueto-Felgueroso L., Juanes R., 2011. Fluid mixin from viscous fingering. Phys. Rev. Lett., 106, 194502. DOI: 10.1103/PhysRevLett.106.194502.
  • 10. Kampitsis A.E., Adam A., Salina P., Pain C.C., Muggeridge A.H., Jackson M.D., 2020. Dynamic adaptive mesh optimisation for immiscible viscous fingering. Comput. Geosci., 24, 1221–1237. DOI: 10.1007/s10596-020-09938-5.
  • 11. Lagrée B., Zaleski S., Bondino I., 2016. Simulation of viscous fingering in rectangular porous media with lateral injection and two- and three-phase flows. Transp. Porous Media, 113, 491–510. DOI: 10.1007/s11242-016-0707-x.
  • 12. Lahtinen L., Mattila T., Myllyviita T., Seppälä J., Vasander H., 2022. Effects of paludiculture products on reducing greenhouse gas emissions from agricultural peatlands. Ecol. Eng., 175, 106502. DOI: 10.1016/j.ecoleng.2021.106502.
  • 13. Law E.P., Arnow E., Diemont S.A.W., 2020. Ecosystem services from old-fields: effects of site preparation and harvesting on restoration and productivity of traditional food plants. Ecol. Eng. 158, 105999. DOI: 10.1016/j.ecoleng.2020.105999.
  • 14. Ledakowicz S., Ziemińska-Stolarska A., 2023. The role of lif cycle assessment in the implementation of 1 circular economy in sustainable future. Chem. Process Eng., 44, e37. DOI: 10.24425/cpe.2023.147396.
  • 15. Li J., Rivière B., 2016. Numerical modeling of miscible viscous fingering instabilities by high-order methods. Transp. Porou Media, 113, 607–628. DOI: 10.1007/s11242-016-0715-x.
  • 16. Li S., Lowengrub J.S., Fontana J., Palffy-Muhoray P., 2009. Control of viscous fingering patterns in a radial hele-shaw cell. Phys. Rev. Lett., 102, 174501. DOI: 10.1103/Phys- RevLett.102.174501.
  • 17. Liobikien ˙e G., Rimkuvien ˙e D., 2020. The role of income inequality on consumption-based greenhouse gas emissions under different stages of economic development. Environ. Sci. Pollut. Res., 27, 43067–43076. DOI: 10.1007/s11356-020-10244-x.
  • 18. Malhotra S., Sharma M.M., Lehman E.R., 2015. Experimental study of the growth of mixing zone in miscible viscous fingering. Phys. Fluids, 27, 014105. DOI: 10.1063/1.4905581.
  • 19. Mazis A., Litskas V.D., Platis D.P., Menexes G.C., Anagnos- topoulos C.D., Tsaboula A.D., Mamolos A.P., Kalburtji K.L. 2021. Could energy equilibrium and greenhouse gas emission in agroecosystems play a key role in crop replacement? A case study in orange and kiwi orchards. Environ. Sci. Pollut. Res., 28, 29421–29431. DOI: 10.1007/s11356-021-12774-4.
  • 20. Mostaghimi P., Kamali F., Jackson M.D., Muggeridge A.H., Pain C.C., 2016. Adaptive mesh optimization for simulation of immiscible viscous fingering. SPE J., 21, 2250–2259. DOI: 10.2118/173281-PA.
  • 21. Paidoussis M.P., 1998. Fluid-structure interactions: Slender structures and axial flow. Academic Press, London.
  • 22. Pałaszyńska K., Juszczak M., 2018. Gaseous emissions during agricultural biomass combustion in a 50 KW moving step grate boiler. Chem. Proc. Eng., 39, 197–208. DOI: 10.24425/119109.
  • 23. Peters E.J., Broman J.A., Broman Jr. W.H., 1987. Computer image processing: a new tool for studying viscous fingering in corefloods. SPE Res. Eng., 2, 720–728. DOI: 10.2118/13668-PA.
  • 24. Pinilla A., Asuaje M., Ratkovich N., 2021. Experimental and computational advances on the study of Viscous Fingering: an umbrella review. Heliyon, 7, e07614. DOI: 10.1016/j.heliyon.2021.e07614.
  • 25. Singh A., Singh Y., Pandey K.M., 2020. Viscous fingering insta- bilities in radial Hele–Shaw cell: a review. Mater. Today Proc., 26, 760–762. DOI: 10.1016/j.matpr.2020.01.022.
  • 26. Sinha S., Tarafdar S., 2009. Viscous fingering patterns and evo- lution of their fractal dimension. Ind. Eng. Chem. Res., 48, 8837–8841. DOI: 10.1021/ie801836r.
  • 27. Wang M., Xiong Y., Liu L., Peng G., Zhang Z., 2019. Lattice Boltzmann simulation of immiscible displacement in porous media: viscous fingering in a shear-thinning fluid. Trans. Porous Media, 126, 411–429. DOI: 10.1007/s11242-018-1162-7.
  • 28. Yang X., Tang Y., Li M., Li C., Wang M., Li X., Zhao J., 2022. Effect of shear-thinning of non-Newtonian fluid on the crossover from capillary fingering to viscous fingering in porous media. Phys. Lett. A, 449, 128364. DOI: 10.1016/j.physleta.2022. 128364.
  • 29. Yousefi M., Khoramivafa M., Damghani A.M., 2017. Water foot- print and carbon footprint of the energy consumption in sun- flower agroecosystems. Environ. Sci. Pollut. Res., 24, 19827–19834. DOI: 10.1007/s11356-017-9582-4.
  • 30. Zhang C., Oostrom M., Grate J.W., Wietsma T.W., Warner M.G., 2011a. Liquid CO2 displacement of water in a dual-permeability pore network micromodel. Environ. Sci. Technol., 45, 7581–7588. DOI: 10.1021/es201858r.
  • 31. Zhang C., Oostrom M., Wietsma T.W., Grate J.W., Warner M.G., 2011b. Influence of viscous and capillary forces on immiscible fluid displacement: pore-scale experimental study in a waterwet micromodel demonstrating viscous and capillary fingering. Energy Fuels, 25, 3493–3505. DOI: 10.1021/ ef101732k.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ff06e3d-847e-416f-8527-f87c1f51c310
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.