Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Ocena toksyczności azoksystrobiny dla saprofitycznych grzybów oraz rzodkiewki we wczesnych stadiach wzrostu
Języki publikacji
Abstrakty
The aim of the study was to assess the toxicity of azoxystrobin, a fungicide belonging to the strobilurin class, for selected saprophytic fungi (Saccharomyces cerevisiae and Penicillium sp.) and for radish (Raphanus sativus L.) The parameters of fungi growth and the early development stages of radish were analysed. Based on the sensitivity of the organisms and their physiological processes to azoxystrobin, they can be arranged in the following order: growth of sod1 S. cerevisiae mutant, growth of wild-type S. cerevisiae, growth of Penicillium sp., respiration of germinating radish seeds, early seed germination, elongation of roots and seedlings, late seed germination. The mechanism of azoxystrobin toxicity seems to be associated with cellular antioxidant status.
Celem badań była ocena toksyczności azoksytrobiny, fungicydu należącego do klasy strobiluryn dla saprofitycznych grzybów (Saccharomyces cerevisiae i Penicillium sp.) oraz rzodkiewki (Raphanus sativus L.). Analizowano wzrost drożdży szczepu dzikiego i jego mutanta bezdysmutazowego sod1, grzyba strzępkowego Penicillium sp. oraz parametry biochemiczne i fizjologiczne kiełkujących nasion rzodkiewki i powstałych z nich siewek. Najbardziej wrażliwym na azoksytrobinę okazał się wzrost drożdży (mutanta sod1, następnie szczepu dzikiego wt) w następnej kolejności: wzrost grzybni Penicillium, oddychanie kiełkujących nasion rzodkiewki, proces kiełkowania oznaczany po 24 godzinach od wysiewu nasion, wydłużanie korzeni, wydłużanie siewek, proces kiełkowania określany po 96 godzinach. Mechanizm toksyczności azoksytrobiny wydaje się być powiązany z aktywnością komórkowego systemu antyoksydacynego.
Czasopismo
Rocznik
Tom
Strony
81--92
Opis fizyczny
Bibliogr. 40 poz., wykr., tab.
Twórcy
autor
- Faculty of Agrobioengineering, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland, phone: +48 81 524 81 04
autor
- Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
autor
- Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
Bibliografia
- [1] Anonymous. China Strobilurin Fungicides Market Report 2016 Edition. http://www.reportlinker.com/p04312496-summary/China-Strobilurin-Fungicides-Market-Report-Edition.html
- [2] Reddy PP. Strobilurin Fungicides. Chapter 12 In: Recent advances in crop protection. India: Springer; 2013:185-200. DOI: org/10.1007/978-81-322-0723-8_12.
- [3] Elliott M, Shamoun SF, Sumampong G. Effects of systemic and contact fungicides on life stages and symptom expression of Phytophthora ramorum in vitro and in planta. Crop Prot. 2015;67:136-144. DOI. 10.1016/j.cropro.2014.10.008.
- [4] Bertelsen JR, de Neergaard E, Smedegaard-Petersen V. Fungicidal effects of azoxystrobin and epoxiconazole on phyllosphere fungi, senescence and yield of winter wheat. Plant Pathol. 2001;50:190-205. DOI: org/10.1046/j.1365-3059.2001.00545.x.
- [5] Adettutu EM, Ball AS, Osborn AM. Azoxystrobin and soil interactions: degradation and impact on soil bacterial and fungal communities. J Appl Microbiol. 2008;105:1777-1790. DOI: org/10.1111/j.1365-2672.2008.03948.x.
- [6] Zhang YJ, Zhang X, Zhou MG, Chen CJ, Wang JX, Wang HC, Zhang H. Effect of fungicides JS399-19, azoxystrobin, tebuconazole, and carbendazim on the physiological and biochemical indices and grain yield of winter wheat. Pestic Biochem Physiol. 2010; 98:151–157. DOI: org/10.1016/j.pestbp.2010.04.007.
- [7] Wu Y-X, von Tiedeman A. Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L) exposed to ozone. Environ Pollut. 2002;116:37-47. DOI: org/10.1016/S0269-7491(01)00174-9.
- [8] Ruske RE, Gooding MJ, Jones SA. The effects of adding picoxystrobin, azoxystrobin and nitrogen to a triazole programme on disease control, flag leaf senescence, yield and grain quality of winter wheat. Crop Prot. 2003;22:975-987. DOI: org/10.1016/S0261-2194(03)00113-3.
- [9] Grossmann K, Kwiatkowski J, Caspar G. Regulation of phytohormone levels, leaf senescence and transpiration by the strobilurin kresoxim-methyl in wheat (Triticum aestivum). J Plant Physiol. 1999;154:805-808. DOI: org/10.1016/S0176-1617(99)80262-4.
- [10] Leinhos ME, Gold RE, Duggelin M, Guggenheim R. Development and morphology of Uncinula necator ollowing treatment with the fungicides kresoxim-methyl and penconazole. Mycol Res. 1997;101:1033-1046. DOI: org/10.1017/S0953756297003651.
- [11] Filoda G. Impact of some fungicides on mycelium growth of Colletotrichum gloeosporioides (Penz.) Penz Sacc Pestycydy/Pesticides. 2008;(3-4):109-116. agro.icm.edu.pl/agro/element/bwmeta1.element.../ Filoda.pdf
- [12] Horsfield A, Wicks T, Davies K, Wilson D, Paton S. Effect of fungicide use strategies on the control of early blight (Alternaria solani) and potato yield. Australas Plant Pathol. 2010;39:368-375. DOI: org/10.1071/AP09090.
- [13] Lokare PD. Effect of roadside air pollution on phylloplane fungal diversity of Polyalthia longifolia Sonn. Int Res J Sci Eng. 2018;A4:69-72. http://oaji.net/articles/2017/731-1523935261.pdf
- [14] Wachowska U. Activity of fungicides against epiphytic yeast-like fungi of winter wheat. Polish J Environ Stud. 2009;18(6):1171-1176. https://www.pjoes.com/pdf/18.6/1171-1176.pdf
- [15] Curtis IS. The noble radish: past, present and future. Trends Plant Sci. 2003;(8):305-307. DOI: 10.1016/S1360-1385(03)00127-4.
- [16] Sridharan R, Manivannan P, Kishorekumar R, Panneerselvam R. Membrane integrity and riboflavin content of Raphanus sativus L. as affected by triazole growth retardants. Middle East J Sci Res. 2009;4(1):52-56. https://www.idosi.org/mejsr/mejsr4(1)/12.pdf
- [17] Krzepiłko A, Zych-Wężyk I. Effect of the pesticide Karate 025EC on the antioxidant properties of radish (Raphanus sativus L.) seedling extract. Ecol Chem Eng A. 2010;17(12):1629-1634. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPG8-0059-0026
- [18] Święciło A. Effect of pesticide preparations and indoleacetic acid on yeast Saccharomyces cerevisiae cells. Ecol Chem Eng A. 2011;18 (7):967-972. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BPG8-0061-0013
- [19] Wang Y, Xu L, Chen Y, Shen H, Gong Y, Limera C, et al. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to lead (Pb). Stress with next generation sequencing. PLoS One. 2013;8(6):e66539. DOI: 10.1371/journal.pone.0066539.
- [20] Sharma N, Hundal GS, Sharma I, Bhardwaj R. 28-homobrassinolide alters protein content and activities of glutathione-s-transferase and polyphenol oxidase in Raphanus sativus L. plants under heavy metal stress. Toxicol Int. 2014;21(1):44-50. DOI: 10.4103/0971-6580.128792.
- [21] Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V. Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol. 2017;15:33. DOI: 10.1186/s12951-017-0268-3.
- [22] Lewkowski R, Karpowicz M, Morawska P, Rychter D, Rogacz K, Lewicka P. Synthesis and ecotoxicological impact of ferrocene-derived amino-phosphonates using a battery of bioassays. RSC Adv. 2017;7:38399-38409. DOI: 10.1039/C7RA06079C.
- [23] Bilinski T, Lukaszkiewicz J, Sledziewski A. Demonstration of anaerobic catalase synthesis in cz1 mutant of Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1978;83:1225-1233.
- [24] Święciło A. Inhibitory effects of sodium benzoate on germination and growth seedling of radish Raphanus sativus L. Ecol Chem Eng A. 2008;15(3):245-251. ttp://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPG4-0043-0009.
- [25] Mendes CR, Moraes DM, Lima M, Lopes NF. Respiratory activity for the differentiation of vigor on soybean seeds lots. Rev bras Sementes. 2009;31(2):171-176. DOI: org/10.1590/S0101-31222009000200020.
- [26] Hoffman LE, Wilcox WF. Factors influencing the efficacy of myclobutanil and azoxystrobin for control of grape black rot. Plant Dis. 2003;87:273-281. DOI: org/10.1094/PDIS.2003.87.3.273.
- [27] Godwin JR, Young JE, Hart CA. Effects on development of cereal pathogens. Proceedings of the Brighton Crop Protection Conference. Farnham, UK: British Crop Protection Council, ICIA 5504. 1994;259-264. http://dx.doi.org/10.1590/S1517-83822009000200018.
- [28] Possiede YM. Gabardo J, Kava-Cordeiro V, Galli-Terasawa LV, Azevedo J, Glienke CI. Fungicide resistance and genetic variability in plant pathogenic strains of Guignardia citricarpa. Braz J Microbiol. 2009;40(2):308-313. DOI: 10.1590/S1517-838220090002000018.
- [29] Fu SF, Sun PF, Lu HY, Wei JY, Xiao HS, Fang WT, Cheng BY, Chou JY. Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata. Lab Fungal Biol. 2016;120(3):433-448. DOI: 10.1016/j.funbio.2015.12.006.
- [30] Gahyung L, Sang-Heon L, Kyung Mo K, Choong-Min R. Foliar application of the leaf-colonizing yeast Pseudozyma churashimaensis elicits systemic defense of pepper against bacterial and viral pathogens. Sci Rep. 2017;7:39432. DOI: 10.1038/srep39432.
- [31] Parsons AB, Brost RL, Ding H, Li Z, Zhang C, Sheikh B, et al. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol. 2004;22(1):62-69. DOI: 10.1038/nbt919.
- [32] Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(Pt 2):335-344. DOI: 10.1113/jphysiol.2003.049478.
- [33] Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;278(38):36027-36031. DOI: 10.1074/jbc.M304854200.
- [34] Kim JH, Campbell BC, Mahoney N, Chan KL, May GS. Targeting antioxidative signal transduction and stress response system: control of pathogenic Aspergillus with phenolics that inhibit mitochondrial function. J Appl Microbiol. 2006;101(1):181-189. DOI: 10.1111/j.1365-2672.2006.02882.x.
- [35] Kim JH, Campbell BC, Mahoney N, Chan KL, Molyneux RJ, May GS. Enhanced activity of strobilurin and fludioxonil by using berberine and phenolic compounds to target fungal antioxidative stress response. Lett Appl Microbiol. 2007;45(2):134-141. DOI: 10.1111/j.1472-765X.2007.02159.x
- [36] Sudisha J, Niranjana SR, Sukanya SL, Girijamba R, Lakshmidevi N, Shetty HS. Relative efficacy of strobilurin formulations in the control of downy mildew of sunflower. J Pest Sci. 2010;83:461-470. DOI:10.1007/s10340-010-0316-3.
- [37] Monofort F, Klepper BL, Smiley RW. Effects of two triazole seed treatments, triticonazole and triadimenol, on growth and development of wheat. Pestic Sci. 1996;46:315-322. DOI: org/10.1002/(SICI)1096-9063(199604)46:4<315::AID-PS369>3.0.CO;2-R.
- [38] Giuliani MM, Carucci F, Nardella E, Francavilla M, Ricciardi L, Lotti C, Gatta G. Combined effects of deficit irrigation and strobilurin application on gas exchange, yield and water use efficiency in tomato (Solanum lycopersicum L.). Sci Hortic. 2018;233:149-158. DOI: 10.1016/j.scienta.2018.01.052.
- [39] Görtz A, Oerke EK, Puhl T, Steiner U. Effect of environmental conditions on plant growth regulator activity of fungicidal seed treatments of barley. J Appl Bot Food Qual. 2008;8:60-68. http://citeseerx.ist.psu.edu/viewdoc/download?doi= 10.1.1.898.4760&rep=rep1&type=pdf
- [40] Van Dingenen J, Antoniou C, Filippou P, Pollier J, Gonzalez N, Dhondt S, et al. Strobilurins as growth-promoting compounds: how Stroby regulates Arabidopsis leaf growth. Plant Cell Environ. 2017;40(9):1748-1760. DOI: 10.1111/pce.12980.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2fee75ee-6fe6-4b59-a213-e129aa52f8a8