Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Comparison of noise reduction methods for environmental thermal images
Języki publikacji
Abstrakty
W artykule przedstawione zostały standardowe oraz nowoczesne metody redukcji szumu dla termograficznych obrazów cyfrowych. Pokazano działanie kilku rodzajów filtracji różniących się zasadą działania: począwszy od metod działających w domenie przestrzeni lub częstotliwości do metod przestrzenno-częstotliwościowych (transformata falkowa, krzywkowa). Metody odszumiania przetestowane zostały zarówno na przykładzie temperaturowych obrazów syntetycznych, jak i na rzeczywistych środowiskowych obrazach termicznych.
Thermography, as a fast and remote method of temperature imaging, can be used in environmental process monitoring [1, 2]. The recorded thermal images are noisy and low contrast. In Section 2 of the paper standard and modern methods of noise reduction for digital images are presented. The effect of several different types of filtration (operations in space or frequency domain [5, 6, 7]) and spatial-frequency transforms (wavelet transform (Fg. 1) [8] and curvelet transform [9]) are shown in Section 3. Noise reduction methods were tested both on synthetic temperature data examples and environmental thermal images. In order to examine the noise level of a camera, after the camera software corrections, the experiment (Fig. 2) was conducted. Fig. 3 shows the results of synthetic image denoising. Tab. 1 lists the mean square error for all the presented methods. In Section 4 the results of all the noise reduction methods for environmental images are presented (Figs. 4, 5). The best results for synthetic images were obtained for the wavelet transform using Daubechies wavelet family. This method required adapting several parameters. For both environmental images the Butterworth filtering, the wavelet and curvelet methods gave the bests results.
Wydawca
Czasopismo
Rocznik
Tom
Strony
994--997
Opis fizyczny
Bibliogr. 9 poz., rys., tab., wzory
Twórcy
autor
- AGH Akademia Górniczo-Hutnicza, Wydział Geologii, Geofizyki i Ochrony Środowiska, Al. Mickiewicza 30, 30-059 Kraków
autor
- AGH Akademia Górniczo-Hutnicza, Wydział Geologii, Geofizyki i Ochrony Środowiska, Al. Mickiewicza 30, 30-059 Kraków
autor
- AGH Akademia Górniczo-Hutnicza, Wydział Geologii, Geofizyki i Ochrony Środowiska, Al. Mickiewicza 30, 30-059 Kraków
Bibliografia
- [1] Więcek B., De Mey G.: Termowizja w podczerwieni. Podstawy i zastosowania. Wydawnictwo PAK, Warszawa, 2011.
- [2] Bukowska-Belniak B., Leśniak A.: Application of thermographic research in environmental protection. Polish Journal of Environmental Studies, Vol. 18, No. 3A, p. 38-43, Olsztyn, 2009.
- [3] Wróbel A.: Zastosowania termowizji w badaniach środowiska. Pomiary termowizyjne w praktyce: praca zbiorowa pod red. H. Madury, Agenda Wydawnicza SIMP, Warszawa, 2004.
- [4] Minkina W., Dudzik S.: Infrared thermography: Errors and uncertainties, Blackwell Science, 2009.
- [5] Tadeusiewicz R., Korohoda P.: Komputerowa analiza i przetwarzanie obrazów. Wydawnictwo Fundacji Postępu Telekomunikacji, Kraków, 1997.
- [6] Lim J. S.: Two-dimensional signal and image processing. Englewood Cliffs, NJ, Prentice Hall, 1990.
- [7] Zieliński T.: Cyfrowe przetwarzanie sygnałów. Wydawnictwa Komunikacji i Łączności, Warszawa, 2009.
- [8] Białasiewicz J. T.: Falki i aproksymacje. Wydawnictwo Naukowo-Techniczne, Warszawa, 2004.
- [9] Starck J. L., Candes E. J., Donoho D. L.: The curvelet transform for image denoising. IEEE Transactions on Image Processing, Vol. 11, No. 6, p. 670-684, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2fe0745b-2d2a-4820-8d51-e944eb547b69