PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

An Energy Efficient QAM Modulation with Multidimensional Signal Constellation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Packing constellations points in higher dimensions, the concept of multidimensional modulation exploits the idea drawn from geometry for searching dense sphere packings in a given dimension, utilising it to minimise the average energy of the underlying constellations. The following work analyses the impact of spherical shaping of the constellations bound instead of the traditional, hyper-cubical bound. Balanced constellation schemes are obtained with the N-dimensional simplex merging algorithm. The performance of constellations of dimensions 2, 4 and 6 is compared to the performance of QAM modulations of equivalent throughputs in the sense of bits transmitted per complex (twodimensional) symbols. The considered constellations give an approximately 0.7 dB to 1 dB gain in terms of BER over a standard QAM modulation.
Twórcy
  • student, Poznań University of Technology, Poznań, Poland
Bibliografia
  • [1] Technical Radio Group 3GPP. 3GPP TS 36.211, Physical Channels and Modulations. Technical Report Release 8, 3rd Generation Partnership Project (3GPP), 2009.
  • [2] E. Ben Slimane, S. Jarboui, and A. Bouallegue. Concatenated Orthogonal Space-Time Block Coding with Four Dimensional 8-PSK Trellis Coded Modulation over Fading Channels in Absence of Channel State Information. In Computing, Communications and Applications Conference (ComComAp), 2012, pages 162–166. Ieee, jan 2012.
  • [3] E. Biglieri and M. Elia. Multidimensional Modulation and Coding for Band-Limited Digital Channels. IEEE Transactions on Information Theory, 34(4):803–809, 1988.
  • [4] J. Boutros, E. Viterbo, C. Rastello, and J. C. Belfiore. Good Lattice Constellations for Both Rayleigh Fading and Gaussian Channels. IEEE Transactions on Information Theory, 42(2):502–518, 1996.
  • [5] J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups. Springer Science, New York, 2nd edition, 1993.
  • [6] A. Dochhan, B. Teipen, and M. Eiselt. A 3-Dimensional Simplex Modulation Format with Improved OSNR Performance Compared to DPBPSK. In Photonic Networks, 14. 2013 ITG Symposium. Proceedings, pages 1–5, 2013.
  • [7] ETSI EN 302 755 Digital Video Broadcasting (DVB). Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2), 2012.
  • [8] J. K. Fischer, S. Alreesh, R. Elschner, F. Frey, N. Markus, C. Schmidt-Langhorst, and C. Schubert. Bandwidth-Variable Transceivers based on Four-Dimensional Modulation Formats. Journal of Lightwave Technology, 32(16):2886–2895, 2014.
  • [9] J. K. Fischer, S. Alreesh, T. Tanimura, R. Elschner, F. Frey, C. Meuer, and L. Molle. Four-Dimensional Coded Modulation : 6PolSK-QPSK. In Photonic Networks, 14. 2013 ITG Symposium. Proceedings, pages 5–10, 2013.
  • [10] A. Gersho and V. B. Lawrence. Multidimensional Signalling Constellations for Voiceband Data Transmission. IEEE Journal on selected areas in communication, SAC-2(5):687–702, 1984.
  • [11] J. S. Han and M. J. Kim. Offset Quadrature-Quadrature Phase Shift Keying with Half-Sine Pulse Shaping. In 2013 International Conference on ICT Convergence (ICTC), pages 931–935. Ieee, oct 2013.
  • [12] IEEE Task P754. IEEE 754-2008, Standard for Floating-Point Arithmetic, 2008.
  • [13] M. Karlsson and E. Agrell. Spectrally efficient four-dimensional modulation. In Optical Fiber Communication Conference, pages 1–3, Washington, D.C., 2012. Osa.
  • [14] J. Karout, X. Liu, C. Sethumadhavan, E. Agrell, M. Karlsson, and R. J. Essiambre. Experimental Demonstration of an Optimized 16-ary Four-Dimensional Modulation Format Using Optical OFDM. In Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, pages 1–3, Washington, D.C., 2013. Osa.
  • [15] NEWCOM. libitpp, 2007.
  • [16] J. Porath and T. Aulin. Design of multidimensional signal constellations. Communications, IEE Proceedings-, 150(5):317–323, 2003.
  • [17] K. H. Priya and M. Tamilarasi. A Trellis-Coded Modulation Scheme with 32-Dimensional Constant Envelope Q2PSK Constellation. In International Conference on Communication and Signal Processing, pages 821–825, 2013.
  • [18] J. G. Proakis and M. Salehi. Digital Communications. McGraw-Hill Education, New York, 5 edition, 2008.
  • [19] D. Saha and T. Birdsal. Quadrature-Quadrature Phase-Shift Keying. IEEE Transactions on Communications, 37(5):473–448, 1989.
  • [20] H. Sari. A generalization of rnultidimensional modulation. In IEEE International Conference on Communications, pages 683–687, Seattle, 1995.
  • [21] M. Visintin, E. Biglieri, and V. Casteuani. Four-Dimensional Signaling for Bandlimited Channels. IEEE Transactions on Communications, 42(2):403–409, 1994.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2fdeecfd-076b-4ec1-85cc-baf0ff2260a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.