PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trends and problems in the sustainable modernisation of residential buildings

Autorzy
Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
Sustainable building modernisation is an important step towards reducing the negative environmental impact of buildings, reducing energy consumption in existing residential buildings, creating more comfortable and functional living conditions, and improving their technical condition. Unfortunately, this is a burdensome, time-consuming and costly process that requires difficult decision-making. They must reasonably enable the intended sustainability goals to be achieved. Bearing this in mind, the article presents research on the issue of modernisation residential buildings. The aim is to provide up-to-date knowledge aimed at supporting modernisation decision-making. A study of the literature shows that research on sustainable modernisation of residential buildings is very extensive and unsystematic. Research areas include issues focused primarily on environmental and economic sustainability goals. More and more research is being conducted towards modernisation that takes into account wider social needs. Recent research points to the need to implement more holistic modernisation scenarios that meet a broader set of sustainability goals and criteria and that involve more stakeholders at earlier stages of modernisation. However, achieving sustainable building goals requires decision support for contrasting objectives when selecting optimal modernisation strategies. Therefore, increasingly better and more efficient tools, methods and decision support systems are being developed that provide systematic approaches for carrying out sustainable building modernisations. Building renovation decisions also require the identification and removal of barriers to modernisation and the skilful management of the various types of knowledge in terms of its creation, processing and use, providing the various stakeholders with appropriately processed knowledge during the residential modernisation stage.
PL
Zrównoważona modernizacja budynków mieszkalnych dotychczas rozumiana, jako odpowiedzialna za wdrażanie energooszczędnych i ekologicznych rozwiązań technologiczno materiałowych, obecnie rozpatrywana jest znacznie szerzej i ma na celu wypracowywanie rozwiązań modernizacyjnych zapewniających równowagę w osiągnięciu celów środowiskowych, ekonomicznych, społecznych oraz innych [1]. Działania jakie realizowane są w ramach tego procesu mają na celu zmniejszenie negatywnego oddziaływania budynków na środowisko i zużycia energii w istniejących budynkach mieszkalnych, stwarzanie bardziej komfortowych i funkcjonalnych warunków do zamieszkania, a także poprawę ich stanu technicznego. Jednak, pomimo że w ostatnich latach nastąpił duży postęp w kierunku wdrażania polityki zrównoważonego rozwoju w zakresie renowacji i modernizacji istniejących budynków, to w wielu krajach wciąż napotyka się na wiele problemów i barier związanych z jej wdrożeniem. Na podstawie przeprowadzonych badań literaturowych, których celem było określenie problemów i kierunków zrównoważonej renowacji i modernizacji budynków mieszkalnych, zauważa się ogromne zróżnicowanie tematyczne prowadzonych badań. Badania mają charakter multidyscyplinarny i często obejmują różnorodne dziedziny badawcze, takie jak: inżynieria lądowa, środowiskowa, architektura, informatyka oraz inne narzędzia i usługi. Jak dotychczas najwięcej badań prowadzono w zakresie środowiskowych i ekonomicznych priorytetów zrównoważonego rozwoju. Środowiskowe koncentrowały się przede wszystkim na dostarczaniu rozwiązań pozwalających zmniejszyć negatywne oddziaływanie budynku na środowisko zewnętrzne. W przeważającej większości badań aspekt środowiskowy rozpatrywany jest łącznie z innymi ściśle z nim skorelowanymi, takimi jak: energooszczędność i ekonomika modernizacji i utrzymania budynków. Celem tych badań jest dostarczenie efektywnych strategii konserwacji budynków, radykalne zmniejszenie zużycia energii potrzebnej podczas ich eksploatacji poprzez stosowanie odpowiednich technologii materiałowych [11], rezygnację z nieodnawialnych źródeł energii [3, 4], a także zmianę nawyków użytkowych mieszkańców. Coraz więcej badań prowadzonych jest również w kierunku modernizacji uwzględniającej szeroko rozumiane potrzeby społeczne. Zaspokojenie potrzeb mieszkańców poprzez zrównoważony rozwój społeczny oparty o różne potrzeby człowieka, takie jak zdrowie i wygoda, bezpieczeństwo, kultura i dziedzictwo, dostępność itp., ma na celu zapewnienie szeroko rozumianej satysfakcji z użytkowania budynku i stanowi jeden z ważniejszych celów zarządzania obiektem. W kontekście modernizacji budynków poruszany jest również aspekt techniczny, który ma duże znaczenie z uwagi na starzejący się zasób budynków mieszkalnych. W badaniach nad tym problemem zwraca się uwagę na potrzebę utrzymania odpowiednich parametrów budynku, zachowanie jego pierwotnych funkcji oraz zapewnienie niskich kosztów utrzymania. W najnowszych badaniach wskazuje się także na potrzebę wdrażania bardziej holistycznych scenariuszy modernizacji, które obejmują szerszy zestaw kryteriów zrównoważonego rozwoju i pozwalają realizować określone cele, angażując większą liczbę interesariuszy we wczesnych etapach procesu modernizacji. Modernizacja istniejących budynków mieszkalnych ukierunkowana na osiągnięcie celów zrównoważonego budownictwa wymaga wsparcia w podejmowaniu bardziej efektywnych decyzji. Istnieje duża liczba narzędzi, metod, modeli wspomagających podejmowanie decyzji modernizacyjnych oraz systemów oceny budynków w tym certyfikacji pod kątem zrównoważonego rozwoju. W obliczu wielu możliwości wyboru sposobu modernizacji budynków, głównym problemem jest identyfikacja tych, które są bardziej efektywne i niezawodne w długim okresie czasu i które w największym stopniu przyczynią się do rozwiązywania problemów środowiskowych, ekonomicznych i społecznych [8]. W tym celu opracowywane są odpowiednie systemy wsparcia decyzji, które dostarczają systematycznych całościowych podejść dla przeprowadzenia zrównoważonych modernizacji budynków. Ich celem jest określanie najlepszych środków modernizacyjnych oraz wdrażanie odpowiednich działań w całym procesie modernizacji. Skuteczność modernizacji uzależniona jest również od identyfikacji i likwidacji barier uniemożliwiających jej realizację oraz konieczność integracji i umiejętne korzystanie z różnego rodzaju informacji i wiedzy tworzonej przez różnych członków zespołów budowlanych. W artykule dokonano przeglądu istniejącego stanu wiedzy w zakresie barier modernizacji, zarządzania wiedzą, metod oceny stanu budynku, priorytetów zrównoważonej modernizacji. Przedstawiono wybrane koncepcje, metody, techniki oraz narzędzia służące do wspomagania decyzji renowacyjnych, a następnie skategoryzowano i wskazano ich zastosowania w obszarach, w których mogą one wspierać decydentów.
Rocznik
Strony
359--376
Opis fizyczny
Bibliogr. 77 poz., il., tab.
Twórcy
  • Lublin University of Technology, Faculty of Civil Engineering and Architecture, Lublin, Poland
Bibliografia
  • [1] Ch. Passoni, A. Marini, A. Belleri, and C. Menna, “Redefining the concept of sustainable renovation of buildings: State of the art and an LCT-based design framework”, Sustainable Cities and Society, vol. 64, art. no. 102519, 2021, doi: 10.1016/j.scs.2020.102519.
  • [2] M. Arbulu, X. Oregi, L. Etxepare, and R.J. Hernández-Minguillón, “Barriers and challenges of the assessment framework of the Commission Recommendation (EU) 2019/786 on building renovation by European RTD projects”, Energy and Buildings, vol. 269, art. no. 112267, 2022, doi: 10.1016/j.enbuild.2022.112267.
  • [3] A. Sobotka, K. Linczowski, and A.M. Radziejowska, “Substitution of Building Components in Historic Buildings”, Sustainability, vol. 13, no. 16, art. no. 9211, 2021, doi: 10.3390/su13169211.
  • [4] M. Fąfara, Ł. Łukaszewski, E. Owczarek, and I. Źrebiec, “Life Cycle Assessment (LCA) and environmental comparison the selected construction methods of residential buildings in traditional and straw cubes technology – a case study”, Archives of Civil Engineering, vol. 68, no. 3, pp. 241-255, 2022, doi: 10.24425/ace.2022.141883.
  • [5] A. Hauashdh, J. Jailani, L.A. Rahman, and N. AL-Fadhali, “Strategic approaches towards achieving sustainable and effective building maintenance practices in maintenance-managed buildings: A combination of expert interv. and a literature review”, Journal of Building Engineering, vol. 45, art. no. 103490, 2022, doi: 10.1016/j.jobe.2021.103490.
  • [6] A. Santangelo, D. Yanb, X. Feng, and S. Tondelli, “Renovation strategies for the Italian public housing stock: Applying building energy simulation and occupant behaviour modelling to support decision-making proces”, Energy and Buildings, vol. 167, pp. 269-280, 2018, doi: 10.1016/j.enbuild.2018.02.028.
  • [7] P. Santos, A. Carvalho Pereira, H. Gervasio, A. Bettencourt, and D. Mate, “Assessment of health and comfort criteria in a life cycle social context: Application to buildings for higher education”, Building and Environment, vol. 123, pp. 625-648, 2017, doi: 10.1016/j.buildenv.2017.07.014.
  • [8] Ch. Bi and J.C. Little, “Integrated assessment across building and urban scales: A review and proposal for a more holistic, multi-scale, system-of-systems approach”, Sustainable Cities and Society, vol. 82, art. no. 103915, 2022, doi: 10.1016/j.scs.2022.103915.
  • [9] H. Stopps, C. Thorneycroft, M.F. Touchiea, N. Zimmermann, I. Hamilton, and T. Kesik, “High-rise residential building makeovers: Improving renovation quality in the United Kingdom and Canada through systemic analysis”, Energy Research & Social Science, vol. 77, art. no. 102085, 2021, doi: 10.1016/j.erss.2021.102085.
  • [10] P. Wargocki, W. Wei, J. Bendžalová, et al., “TAIL, a new scheme for rating indoor environmental quality in offices and hotels undergoing deep energy renovation”, Energy and Buildings, vol. 244, art. no. 111029, 2021, doi: 10.1016/j.enbuild.2021.111029.
  • [11] M. Awada and I. Srour, “A genetic algorithm based framework to model the relationship between building renovation decisions and occupants’ satisfaction with indoor environmental quality”, Building and Environment, vol. 146, pp. 247-257, 2018, doi: 10.1016/j.buildenv.2018.10.001.
  • [12] J. Zhao, H. Feng, Q. Chen, and B. Garcia de Soto, “Developing a conceptual framework for the application of digital twin technologies to revamp building operation and maintenance processes”, Journal of Building Engineering, vol. 49, art. no. 104028, 2022, doi: 10.1016/j.jobe.2022.104028.
  • [13] H. Zhang, K. Hewage, H. Karunathilake, H. Feng, and R. Sadiq, “Research on policy strategies for implementing energy retrofits in the residential buildings”, Journal of Building Engineering, vol. 43, art. no. 103161, 2021, doi: 10.1016/j.jobe.2021.103161.
  • [14] P.A. Jensen and E. Maslesa, “Value based building renovation – a tool for decision making and evaluation”, Building and Environment, vol. 92, pp. 1-9, 2015, doi: 10.1016/j.buildenv.2015.04.008.
  • [15] A. Kamari, P.H. Kirkegaard, C. Peter, and L. Schultz, “PARADIS – A process integrating tool for rapid generation and evaluation of holistic renovation scenarios”, Journal of Building Engineering, vol. 34, art. no. 101944, 2021, doi: 10.1016/j.jobe.2020.101944.
  • [16] A. Kamari, R. Corrao, and P.H. Kirkegaard, “Sustainability focused decision-making in building renovation”, International Journal of Sustainable Built Environment, vol. 6, no. 2, pp. 330-350, 2017, doi: 10.1016/j.ijsbe.2017.05.001.
  • [17] S. Ebrahimigharehbaghi, Q.K. Qian, F.M. Meijer, and H.J. Visscher, “Transaction costs as a barrier in the renovation decision-making process: A study of homeowners in the Netherlands”, Energy and Buildings, vol. 215, art. no. 109849, 2020, doi: 10.1016/j.enbuild.2020.109849.
  • [18] L. D’Angelo, M. Hajdukiewicz, F. Seri, and M.M. Keane, “A novel BIM-based process workflow for building retrofit”, Journal of Building Engineering, vol. 50, art. no. 104163, 2022, doi: 10.1016/j.jobe.2022.104163.
  • [19] J.A. Dauda and S.O. Ajayi, “Understanding the impediments to sustainable structural retrofit of existing buildings in the UK”, Journal of Building Engineering, vol. 60, art. no. 105168, 2022, doi: 10.1016/j.jobe.2022.105168.
  • [20] J. Fořt, P. Beran, Z. Pavlik, and R. Černý, “Complex assessment of reconstruction works on an institutional building: A case study”, Journal of Cleaner Production, vol. 202, pp. 871-882, 2018, doi: 10.1016/j.jclepro.2018.08.197.
  • [21] C. Nägeli, A. Farahani, M. Österbring, J-O. Dalenbäck, and H. Wallbaum, “A service-life cycle approach to mainten. and energy retrofit planning for building portfolios”, Building and Environment, vol. 160, art. no. 106212, 2019, doi: 10.1016/j.buildenv.2019.106212.
  • [22] J. Alabid, A. Bennadji, and M. Seddiki, “A review on the energy retrofit policies and improvements of the UK existing buildings, challenges and benefits”, Renewable and Sustainable Energy Reviews, vol. 159, art. no. 112161, 2022, doi: 10.1016/j.rser.2022.112161.
  • [23] N. Murtagh, A.M. Owen, and K. Simpson, “What motivates building repair-maintenance practitioners to include or avoid energy efficiency measures? Evidence from three studies in the United Kingdom”, Energy Research & Social Science, vol. 73, art. no. 101943, 2021, doi: 10.1016/j.erss.2021.101943.
  • [24] M.Á. García-Fuentes, S. Álvarez, V. Serna, M. Pousse, and A. Meiss, “Integration of Prioritisation Criteria in the Design of Energy Efficient Retrofitting Projects at District Scale: A Case Study”, Sustainability, vol. 11, no. 14, art. no. 3861, 2019, doi: 10.3390/su11143861.
  • [25] K. Farsäter, P. Strandberg, and Å. Wahlström, “Building status obtained before renovating multifamily buildings in Sweden”, Journal of Building Engineering, vol. 24, art. no. 100723, 2019, doi: 10.1016/j.jobe.2019.02.015.
  • [26] Y. Xue, A. Temeljotov-Salaj, and C.M. Lindkvist, “Renovating the retrofit process: People-centered business models and co-created partnerships for low-energy buildings in Norway”, Energy Research & Social Science, vol. 85, art. no. 102406, 2022, doi: 10.1016/j.erss.2021.102406.
  • [27] N. Dzulkifli, N.N. Sarbini, I.S. Ibrahim, N.I. Abidin, F.M. Yahaya, and N.Z.N. Azizan, “Review on maintenance issues toward building maintenance management best practices”, Journal of Building Engineering, vol. 44, art. no. 102985, 2021, doi: 10.1016/j.jobe.2021.102985.
  • [28] Y. Peng, J-R. Lin, J-P. Zhang, and Z-Z. Hu, “A hybrid data mining approach on BIM-based building operation and Maintenance”, Building and Environment, vol. 126, pp. 483-495, 2017, doi: 10.1016/j.buildenv.2017.09.030.
  • [29] I. Motawa and A. Almarshad, “A knowledge-based BIM system for building maintenance”, Automation in Construction, vol. 29, pp. 173-182, 2013, doi: 10.1016/j.autcon.2012.09.008.
  • [30] Z-S. Chen, L-P. Yang, R.M. Rodríguez, Z. Zhu, W. Pedrycz, and M.J. Skibniewski, “BIM-aided large-scale group decision support: Optimization of the retrofit strategy for existing buildings”, Applied Soft Computing, vol. 131, art. no. 109790, 2022, doi: 10.1016/j.asoc.2022.109790.
  • [31] R. Marmo, F. Polverino, M. Nicolella, and A. Tibaut, “Building performance and maintenance information model based on IFC schema”, Automation in Construction, vol. 118, art. no. 103275, 2020, doi: 10.1016/j.autcon.2020.103275.
  • [32] F. Rodriguesa, R. Matosa, A. Alvesc, P. Ribeirinhoa, and H. Rodriguesb, “Building life cycle applied to refurbishment of a traditional building from Oporto, Portugal”, Journal of Building Engineering, vol. 17, pp. 84-95, 2018, doi: 10.1016/j.jobe.2018.01.010.
  • [33] Z. Ding S. Liua, L. Liao, and L. Zhang, “A digital construction framework integrating building information modeling and reverse engineering technologies for renovation projects”, Automation in Construction, vol. 102, pp. 45-58, 2019, doi: 10.1016/j.autcon.2019.02.012.
  • [34] A. Gonzalez-Caceres, J. Karlshøj, T.A. Vik, E. Hempel, and T.R. Nielsen, “Evaluation of cost-effective measures for the renovation of existing dwellings in the framework of the energy certification system: A case study in Norway”, Energy and Buildings, vol. 264, art. no. 112071, 2022, doi: 10.1016/j.enbuild.2022.112071.
  • [35] A.G. Mohamed, M.R. Abdallah, and M. Marzouk, “BIM and semantic web-based maintenance information for existing buildings”, Automation in Construction, vol. 116, art. no. 103209, 2020, doi: 10.1016/j.autcon.2020.103209.
  • [36] J.A.P. Amorocho and T. Hartmann, “Reno-Inst: An ontology to support renovation projects planning and renovation products installation”, Advanced Engineering Informatics, vol. 50, art. no. 101415, 2021, doi: 10.1016/j.aei.2021.101415.
  • [37] P-Ch. Lee, W. Xie, T-P. Lo, D. Long, and X. Tang, “A Cloud Model-based Knowledge Mapping Method for Historic Building Maintenance based on Building Information Modelling and Ontology”, KSCE Journal of Civil Engineering, vol. 23, pp. 3285-3296, 2019, doi: 10.1007/s12205-019-2457-0.
  • [38] C. Jiménez-Pulido, A. Jiménez-Rivero, and J. García-Navarro, “Improved sustainability certification systems to respond to building renovation challenges based on a literature review”, Journal of Building Engineering, vol. 45, art. no. 103575, 2022, doi: 10.1016/j.jobe.2021.103575.
  • [39] F. Faqih and T. Zayed, “A comparative review of building component rating systems”, Journal of Building Engineering, vol. 33, art. no. 101588, 2021, doi: 10.1016/j.jobe.2020.101588.
  • [40] M. Lendo-Siwicka, R. Trach, K. Pawluk, G. Wrzesiński, and A. Żochowska, “Assessment of the technical condition of heritage buildings with the use of fuzzy logic”, Archives of Civil Engineering, vol. 69, no. 2, pp. 123-140, 2023, doi: 10.24425/ace.2023.145257.
  • [41] F. Karaca, M. Guney, and A. Kumisbek, “Indicator rating methodology for Rapid Sustainability Assessment Method (RSAM) for existing residential buildings using opinions of residents”, MethodsX, vol. 7, art. no. 101105, 2020, doi: 10.1016/j.mex.2020.101105.
  • [42] V. Lupăşteanu, R. Lupăşteanu, and C. Chingălată, “Condition assessment of buildings in Romania: A proposed method and case study”, Journal of Building Engineering, vol. 47, art. no. 103814, 2022, doi: 10.1016/j.jobe.2021.103814.
  • [43] A. Serrano-Jiménez, P. Femenías, L. Thuvander, and Á. Barrios-Padura, “A multi-criteria decision support method towards selecting feasible and sustainable housing renovation strategies”, Journal of Cleaner Production, vol. 278, art. no. 123588, 2021, doi: 10.1016/j.jclepro.2020.123588.
  • [44] A. Mastrucci, A. Marvuglia, E. Benetto, and U. Leopold, “A spatio-temporal life cycle assessment framework for building renovat. scenarios at the urban scale”, Renewable and Sustainable Energy Reviews, vol. 126, art. no. 109834, 2020, doi: 10.1016/j.rser.2020.109834.
  • [45] M. Sadeghi, R. Naghedi, K. Behzadian, A. Shamshirgaran, M.R. Tabrizi, and R. Maknoon, “Customisation of green buildings assessment tools based on climatic zoning and experts judgement using K-means clustering and fuzzy AHP”, Building and Environment, vol. 223, art. no. 109473, 2022, doi: 10.1016/j.buildenv.2022.109473.
  • [46] A. Alwisy, S. BuHamdan, and M. Gül, “Criteria-based ranking of green building design factors according to leading rating systems”, Energy and Buildings, vol. 178, pp. 347-359, 2018, doi: 10.1016/j.enbuild.2018.08.043.
  • [47] K. Zhao, Z. Jiang, D. Li, and J. Ge, “Outdoor environment assessment tool for existing neighbourhoods based on the multi-criteria decision-making method”, Building and Environment, vol. 209, art. no. 108687, 2022, doi: 10.1016/j.buildenv.2021.108687.
  • [48] H. Feng, D. R. Liyanage, H. Karunathilake, R. Sadiq, and K. Hewage, “BIM-based life cycle environmental performance assessment of single-family houses: Renovation and reconstruction strategies for aging build. stock in British Columbia”, Journal of Cleaner Production, vol. 250, art. no. 119543, 2020, doi: 10.1016/j.jclepro.2019.119543.
  • [49] A. Shirazi and B. Ashuri, “Embodied Life Cycle Assessment (LCA) comparison of residential building retrofit measures in Atlanta”, Building and Environment, vol. 171, art. no. 106644, 2020, doi: 10.1016/j.buildenv.2020.106644.
  • [50] O. Fahlstedt, A. Temeljotov-Salaj, J. Lohne, and R.A. Bohne, “Holistic assessment of carbon abatement strategies in building refurbishment literature – A scoping review”, Renewable and Sustainable Energy Reviews, vol. 167, art. no. 112636, 2022, doi: 10.1016/j.rser.2022.112636.
  • [51] A. Galimshina, M. Moustapha, A. Hollberg, P. Padey, S. Lasvaux, B. Sudret, and G. Habert, “What is the optimal robust environmental and cost-effective solution for building renovation? Not the usual one”, Energy and Buildings, vol. 251, art. no. 111329, 2021, doi: 10.1016/j.enbuild.2021.111329.
  • [52] S.A. Sharif, A. Hammad, and P. Eshraghi, “Generation of whole building renovation scenarios using variational autoencoders”, Energy and Buildings, vol. 230, art. no. 110520, 2021, doi: 10.1016/j.enbuild.2020.110520.
  • [53] H. Son and Ch. Kim, “Evolutionary many-objective optimization for retrofit planning in public buildings: A comparative study”, Journal of Cleaner Production, vol. 190, pp. 403-410, 2018, doi: 10.1016/j.jclepro.2018.04.102.
  • [54] S. Chang, D. Castro-Lacouture, and Y. Yamagata, “Decision support for retrofitting building envelopes using multi-objective optimization under uncertainties”, Journal of Building Engineering, vol. 32, art. no. 101413, 2020, doi: 10.1016/j.jobe.2020.101413.
  • [55] F.P. Chantrelle, H. Lahmidi, W. Keilholz, M. El Mankibi, and P. Michel, “Development of a multicriteria tool for optimizing the renovation of buildings”, Applied Energy, vol. 88, no. 4, pp. 1386-1394, 2011, doi: 10.1016/j.apenergy.2010.10.002.
  • [56] S.A. Sharif and A. Hammad, “Simulation-Based Multi-Objective Optimization of institutional building renovation considering energy consumption, Life-Cycle Cost and Life-Cycle Assessment”, Journal of Building Engineering, vol. 21, pp. 429-445, 2019, doi: 10.1016/j.jobe.2018.11.006.
  • [57] P. Murray, J. Marquant, M. Niffeler, G. Mavromatidis, and K. Orehounig, “Optimal transformation strategies for buildings, neighbourhoods and districts to reach CO2 emission reduction targets”, Energy and Buildings, vol. 207, art. no. 109569, 2020, doi: 10.1016/j.enbuild.2019.109569.
  • [58] D. Kadrić, A. Aganovic, E. Kadrić, B. Delalić-Gurda, and S. Jackson,- “Applying the response surface methodology to predict the energy retrofit performance of the TABULA residential building stock”, Journal of Building Engineering, vol. 61, art. no. 105307, 2022, doi: 10.1016/j.jobe.2022.105307.
  • [59] S.S. Castro, M.J.S. López, D.G. Menendez, and E.B. Marigorta, “Decision matrix methodology for retrofitting techniques of existing buildings”, Journal of Building Engineering, vol. 240, art. no. 118153, 2019, doi: 10.1016/j.jclepro.2019.118153.
  • [60] S. Mejjaouli and M. Alzahrani, “Decision-making model for optimum energy retrofitting strategies in residential building”, Sustainable Production and Consumption, vol. 24, pp. 211-218, 2020, doi: 10.1016/j.spc.2020.07.008.
  • [61] P.S. Nimlyat, “Indoor environmental quality performance and occupants’ satisfaction [IEQPOS] as assessment criteria for green healthcare building rating”, Building and Environment, vol. 144, pp. 598-610, 2018, doi: 10.1016/j.buildenv.2018.09.003.
  • [62] W.S.E. Ismaeel and A.G. Mohamed, “Indoor air quality for sustainable building renovation: A decision-support assessment system using structural equation modelling”, Building and Environment, vol. 214, art. no. 108933, 2022, doi: 10.1016/j.buildenv.2022.108933.
  • [63] N. Kwon, Y. Ahn, B-S. Son, and H. Moon, “Developing a machine learning-based building repair time estimation model considering weight assigning methods”, Journal of Building Engineering, vol. 43, art. no. 102627, 2021, doi: 10.1016/j.jobe.2021.102627.
  • [64] H. Al-Smadi, A. Al-Sakkaf, T. Zayed, and F. Nasiri, “An integrated space-based building maintenance management model using multiobjective optimization”, Smart and Sustainable Built Environment, vol. 12, no. 2, pp. 277-297, 2021, doi: 10.1108/SASBE-04-2021-0064.
  • [65] P. Paulo, F. Branco, J. de Brito, and A. Silva, “BuildingsLife – The use of genetic algorithms for maintenance plan optimization”, Journal of Cleaner Production, vol. 121, pp. 84-98, 2016, doi: 10.1016/j.jclepro.2016.02.041.
  • [66] A. Abdi and S. Taghipour, “Sustainable asset management: A repair-replacement decision model considering environmental impacts, maintenance quality, and risk”, Computers and Industrial Engineering, vol. 136, pp. 117-134, 2019, doi: 10.1016/j.cie.2019.07.021.
  • [67] A. Farahani, H. Wallbaum, and J-O. Dalenbäck, “Optimized maintenance and renovation scheduling in multifamily buildings – a systematic approach based on condition state and life cycle cost of building components”, Construction Management and Economics, vol. 37, no. 3, pp. 139-155, 2019, doi: 10.1080/01446193.2018.1512750.
  • [68] C. Ferreira, A. Silva, J. de Brito, I.S. Dias, and I. Flores-Colen, “The impact of imperfect maintenance actions on the degradation of buildings envelope components”, Journal of Building Engineering, vol. 33, art. no. 101571, 2021, doi: 10.1016/j.jobe.2020.101571.
  • [69] F. Taillandier, Ch. Fernandez, and A. Ndiaye, “Real Estate Property Maintenance Optimization Based on Multiobjective Multidimensional Knapsack Problem”, Computer-Aided Civil and Infrastructure Engineering, vol. 32, no. 3, pp. 227-251, 2017, doi: 10.1111/mice.12246.
  • [70] S-S. Liu and M.F.A. Arifin, “Preventive Maintenance Model for National School Buildings in Indonesia Using a Constraint Programming Approach”, Sustainability, vol. 13, no. 4, art. no. 1874, 2021, doi: 10.3390/su13041874.
  • [71] Y. Cho, S. Lee, J. Lee, and J. Kim, “Analysis of the Repair Time of Finishing Works Using a Probabilistic Approach for Efficient Residential Buildings Maintenance Strategies”, Sustainability, vol. 13, no. 22, art. no. 12443, 2021, doi: 10.3390/su132212443.
  • [72] R. Bucoń and A. Czarnigowska, “Sequential Model for Long-Term Planning of Building Renewal and Capital Improvement”, Sustainability, vol. 13, no. 17, art. no. 9575, 2021, doi: 10.3390/su13179575.
  • [73] B. Nowogońska, “A Methodology for Determining the Rehabilitation Needs of Buildings”, Applied Sciences, vol. 10, no. 11, art. no. 3873, 2020, doi: 10.3390/app10113873.
  • [74] T. Ahmad and M.J. Thaheem, “Developing a residential building-related social sustainability assessment framework and its implications for BIM”, Sustainable Cities and Society, vol. 28, pp. 1-15, 2017, doi: 10.1016/j.scs.2016.08.002.
  • [75] R. Moschetti, H. Brattebø, K.S. Skeie, and A.G. Lien, “Performing quantitative analyses towards sustainable business models in building energy renovation projects: Analytic process and case study”, Journal of Cleaner Production, vol. 199, pp. 1092-1106, 2018, doi: 10.1016/j.jclepro.2018.06.091.
  • [76] T. Hong, Ch. Koo, J. Kim, M. Lee, and K. Jeong, “A review on sustainable construction management strategies for monitoring, diagnosing, and retrofitting the building’s dynamic Energy performance: Focused on the operation and maintenance phase”, Applied Energy, vol. 155, pp. 671-707, 2015, doi: 10.1016/j.apenergy.2015.06.043.
  • [77] A. Serrano-Jiméneza, M.L. Lima, M. Molina-Huelva, and Á. Barrios-Paduraa, “Promoting urban regeneration and aging in place: APRAM – An interdisciplinary method to support decision-making in building renovation”, Sustainable Cities and Society, vol. 47, art. no. 101505, 2019, doi: 10.1016/j.scs.2019.101505.
Identyfikator YADDA
bwmeta1.element.baztech-2fdad9e8-57d7-4507-b4e7-b8ece4c7e3eb