Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Analiza żelbetowej hali magazynowej poddanej obciążeniom pochodzącym od wypiętrzenia powierzchni terenu będących skutkiem likwidacji podziemnych kopalń przez zatapianie
Języki publikacji
Abstrakty
The liquidation of underground mines by the flooding leads to movements of the rock mass and land surface as a result of pressure changes in the flooded zones. The changes resulting from the rising water table caused by the changes in the stress and strain state, as well as the physical and mechanical properties of rock layers, can lead to damage to building structures and environmental changes, such as chemical pollution of the surface water. For this reason, the ability to predict the movements of rock masses generated as a result of mine closure by flooding serves a key function in relation to the protection of the land surface and buildings present thereon. This paper presents an analysis of a steel industrial portal-frame structure under loading generated by the liquidation of a mine by flooding. The authors obtained land surface uplift results for the liquidated mine and used them in a numerical simulation for the example building. Calculations were performed for different cases, and the results were compared to determine whether limit states may be exceeded. A comparison was made between the cases for the design state and for additional loading caused by the uplift of the subsurface layer of the rock mass.
Likwidacja podziemnych kopalń przez zatapianie prowadzi do ruchów górotworu i powierzchni terenu w wyniku zmian ciśnienia w strefach zatapianych. Zmiany wynikające z podniesienia się zwierciadła wody podziemnej, spowodowane zmianami stanu naprężenia i odkształcenia oraz właściwości fizycznych i mechanicznych warstw skał mogą prowadzić do uszkodzeń powierzchniowych obiektów budowlanych oraz zmian środowiskowych, takich jak chemiczne zanieczyszczenie wód przypowierzchniowych. Z tego względu możliwość przewidywania ruchów górotworu powstających w wyniku likwidacji kopalń przez zatapianie pełni kluczową funkcję w odniesieniu do ochrony powierzchni terenu i znajdujących się na nim budynków. W artykule przedstawiono analizę przemysłowej stalowej hali magazynowej pod obciążeniem wynikającym z likwidacji kopalni w wyniku jej zatapiania. Autorzy uzyskali wyniki wypiętrzenia terenu zlikwidowanej kopalni i wykorzystali je w symulacji numerycznej przykładowego budynku. Obliczenia przeprowadzono dla różnych przypadków, a wyniki porównano w celu określenia, czy możliwe jest przekroczenie stanów granicznych. Dokonano porównania pomiędzy stanem projektowym i dla dodatkowego obciążenia spowodowanego wypiętrzeniem przypowierzchniowej warstwy gruntu.
Czasopismo
Rocznik
Tom
Strony
283--298
Opis fizyczny
Bibliogr. 32 poz., il., tab.
Twórcy
autor
- Strata Mechanics Research Institute, Polish Academy of Sciences, Cracow, Poland
autor
- AGH University of Science and Technology, Cracow, Poland
autor
- Strata Mechanics Research Institute, Polish Academy of Sciences, Cracow, Poland
autor
- Building Research Institute, Katowice Branch, Katowice, Poland
Bibliografia
- [1] M. Kawulok, "Mining damages in construction". Warszawa: Instytut Techniki Budowlanej, 2010. (in Polish)
- [2] J. Kwiatek, "Civil structures in mining areas". Katowice: Główny Instytut Górnictwa, 2006. (in Polish)
- [3] J. A. Ledwoń, "Civil engineering in mining areas". Warszawa: Arkady, 1983. (in Polish)
- [4] K. Tajdus, “Numerical simulation of underground mining exploitation influence upon terrain surface,” Arch. Min. Sci., vol. 58, no. 3, 2013, doi:https:/doi.org/10.2478/amsc-2013-0042
- [5] K. Tajduś, R. Misa, and A. Sroka, “Analysis of the surface horizontal displacement changes due to longwall panel advance,” Int. J. Rock Mech. Min. Sci., vol. 104, 2018, doi: https://doi.org/10.1016/j.ijrmms.2018.02.005
- [6] A. Saeidi, O. Deck, M. Al heib, and T. Verdel, “Development of a damage simulator for the probabilistic assessment of building vulnerability in subsidence areas,” Int. J. Rock Mech. Min. Sci., vol. 73, pp. 42-53, Jan. 2015, doi: https://doi.org/10.1016/j.ijrmms.2014.10.007
- [7] A. Sroka, S. Knothe, K. Tajduś, and R. Misa, “Point Movement Trace Vs. The Range Of Mining Exploitation Effects In The Rock Mass,” Arch. Min. Sci., vol. 60, no. 4, 2015, doi: https://doi.org/10.1515/amsc-2015-0060
- [8] A. Misa Rafałand Sroka, K. Tajduś, and M. Dudek, “Analytical design of selected geotechnical solutions which protect civil structures from the effects of underground mining,” J. Sustain. Min., 2019, doi: https://doi.org/10.1016/j.jsm.2018.10.002
- [9] L. Szojda and Ł. Kapusta, “Evaluation of the Elastic Model of a Building on a Curved Mining Ground Based on the Results of Geodetic Monitoring,” Arch. Min. Sci., vol. 65, no. No 2, pp. 213-224, 2020, doi: https://doi.org/10.24425/ams.2020.133188
- [10] I. Djamaluddin, Y. Mitani, and T. Esaki, “Evaluation of ground movement and damage to structures from Chinese coal mining using a new GIS coupling model,” Int. J. Rock Mech. Min. Sci., vol. 48, no. 3, pp. 380-393, Apr. 2011, doi: https://doi.org/10.1016/j.ijrmms.2011.01.004
- [11] C. Braitenberg, T. Pivetta, D. F. Barbolla, F. Gabrovšek, R. Devoti, and I. Nagy, “Terrain uplift due to natural hydrologic overpressure in karstic conduits,” Sci. Rep., vol. 9, no. 1, p. 3934, Dec. 2019, doi: https://doi.org/10.1038/s41598-019-38814-1
- [12] N. Fowkes et al., “Models for the effect of rising water in abandoned mines on seismic activity,” Int. J. Rock Mech. Min. Sci., vol. 77, pp. 246-256, Jul. 2015, doi: https://doi.org/10.1016/j.ijrmms.2015.04.011
- [13] G. Strozik, R. Jendruś, A. Manowska, and M. Popczyk, “Mine Subsidence as a Post-Mining Effect in the Upper Silesia Coal Basin,” Polish J. Environ. Stud., vol. 25, no. 2, pp. 777-785, 2016, doi: https://doi.org/10.15244/pjoes/61117
- [14] K. Heitfeld, M. Heitfeld, P. Rosner, and H. Sahl, “The controlled rise in mine water in the Aachen and Sud Limburg coalfields” in 5. Aachener Bergschandemkundliches Kolloquium, 2003, pp. 71-85. (in German)
- [15] A. Jakubick, U. Jenk, and R. Kahnt, “Modelling of mine flooding and consequences in the mine hydrogeological environment: flooding of the Koenigstein mine, Germany,” Environ. Geol., vol. 42, no. 2-3, pp. 222-234, Jun. 2002, doi: https://doi.org/10.1007/s00254-001-0492-9
- [16] A. Krzemień, A. Suárez Sánchez, P. Riesgo Fernández, K. Zimmermann, and F. González Coto, “Towards sustainability in underground coal mine closure contexts: A methodology proposal for environmental risk management,” J. Clean. Prod., vol. 139, pp. 1044-1056, Dec. 2016, doi: https://doi.org/10.1016/j.jclepro.2016.08.149
- [17] A. Sroka, K. Tajduś, and R. Misa, “Expert opinion on the impact of the rise in mine water in the eastern field of the Ibbenbüren mine on the land surface”, 2017. (in German)
- [18] “Management of environmental risks during and after mine closure (acronym: MERIDA), Contract No. RFCRCT- 2015-00004,” 2020.
- [19] P. Riesgo Fernández, G. Rodríguez Granda, A. Krzemień, S. García Cortés, and G. Fidalgo Valverde, “Subsidence versus natural landslides when dealing with property damage liabilities in underground coal mines,” Int. J. Rock Mech. Min. Sci., vol. 126, p. 104175, Feb. 2020, doi: https://doi.org/10.1016/j.ijrmms.2019.104175
- [20] A. Vervoort, “Surface movement above an underground coal longwall mine after closure,” Nat. Hazards Earth Syst. Sci., vol. 16, no. 9, pp. 2107-2121, Sep. 2016, doi: https://doi.org/10.5194/nhess-16-2107-2016
- [21] M. Dudek, K. Tajduś, R. Misa, and A. Sroka, “Predicting of land surface uplift caused by the flooding of underground coal mines - A case study,” Int. J. Rock Mech. Min. Sci., vol. 132, pp. 104-377, Aug. 2020, doi: https://doi.org/10.1016/j.ijrmms.2020.104377
- [22] A. Preuβe, H. J. Kateloe, and A. Sroka, “Subsidence and uplift prediction in German and Polish hard coal mining,” Markscheidewesen, vol. 120, pp. 23-34, 2013.
- [23] A. Vervoort and P.-Y. Declercq, “Surface movement above old coal longwalls after mine closure,” Int. J. Min. Sci. Technol., vol. 27, no. 3, pp. 481-490, May 2017, doi: https://doi.org/10.1016/j.ijmst.2017.03.007
- [24] A. Vervoort and P.-Y. Declercq, “Upward surface movement above deep coal mines after closure and flooding of underground workings,” Int. J. Min. Sci. Technol., vol. 28, no. 1, pp. 53-59, Jan. 2018, doi: https://doi.org/10.1016/j.ijmst.2017.11.008
- [25] M. Wesołowski, R. Mielimąka, R. Jendruś, and M. Popczyk, “Influence Analysis of Mine Flooding from the Environmental Standpoint: Surface Protection,” Polish J. Environ. Stud., vol. 27, no. 2, pp. 905-915, Jan. 2018, https://doi.org/doi: 10.15244/pjoes/76114
- [26] V. Baglikow, “Damage-relevant effects of the rise in mine water in the Erkelenz hard coal district. Publication series Institute for Mining Surveying,” Rheinisch- Westfälischen Technischen Hochschule Aachen, 2010. (in German)
- [27] K. Firek, J. Rusek, and A. Wodyński, “Decision Trees in the Analysis of the Intensity of Damage to Portal Frame Buildings in Mining Areas,” Arch. Min. Sci., vol. 60, no. 3, 2015, doi: https://doi.org/10.1515/amsc-2015-0055
- [28] A. Cholewicki, M. Kawulok, Z. Lipski, and J. Szulc, Principles for determining loads and checking the limit states of civil structures located in mining areas with reference to the Eurocodes. Design according to Eurocodes. Warszawa: Instytut Techniki Budowlanej, 2012. (in Polish)
- [29] EN 1990:2004 Eurocode - Basis of structural design
- [30] Autodesk, “Robot Structural Analysis Professional.” 2020.
- [31] EN 1991-1-3. Eurocode 1: Actions on structures - Part 1-3: General actions - Snow loads
- [32] EN 1991-1-4. Eurocode 1: Actions on structures - Part 1-4: General actions - Wind loads
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2fd9e8a2-9b8d-48c6-9dd1-5a840b482590