Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, an analytical model describing liquid wicking phenomenon in porous media was constructed, based on the statistical geometry theory and the fractal theory. In the model, a new structure-property relationship, depicted by specific surface, porosity, tortuosity, pore fractal dimension, maximum pore size of the porous media, was introduced into the energy conservation equation. According to the theoretical model, the accumulated imbibition weight in porous media was achieved, and the predictions were verified by available experimental data published in different literatures. Besides, structure parameters influencing the imbibition process upon approaching equi-librium height were discussed. The model and results in this work are useful for the application of porous media in scientific research and industry.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--6
Opis fizyczny
Bibliogr. 33 poz., rys. wz.
Twórcy
autor
- Beijing Institute of Mechanical Equipment, Beijing 100854, China
autor
- School of Aircraft Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
autor
- Beijing Institute of Mechanical Equipment, Beijing 100854, China
autor
- Beijing Institute of Mechanical Equipment, Beijing 100854, China
autor
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
Bibliografia
- 1. Liu, M., Wu, J. & Gan, Y. (2018). Tuning capillary penetration in porous media: Combining geometrical and evaporation effects. Int. J. Heat Mass Tran. 123, 239–250. DOI: 10.1016/j. ijheatmasstransfer.2018.02.101.
- 2. Wang, Y., Li, Y. & Zheng, H. (2019). Equilibrium, kinetic and thermodynamic studies on methylene blue adsorption by Trichosanthes kirilowii Maxim shell activated carbon. Pol. J. Chem. Technol. 21(4), 89–97. DOI: 10.2478/pjct-2019-0044.
- 3. Yin, X., Ma, Y. & Wang, X. (2021). Increasing Effect of Water Clarifiers on the Treatment of Polymer-Containing Oil Production Sewage. Pol. J. Chem. Technol. 23(2), 20–26. DOI: 10.2478/PJCT-2021-0012.
- 4. Sönmez, S. & Arslan, S. (2021). Investigation of the effects on ink colour of lacquer coating applied to the printed substrate in the electrophotographic printing system. Pol. J. Chem. Technol. 23(2), 35–40. DOI: 10.2478/pjct-2021-0014.
- 5. Singh, K., Jung, M. & Brinkmann, M. (2019). Capillary-Dominated Fluid Displacement in Porous Media. Annu. Rev. Fluid Mech. 51, 429–449. DOI: 10.1146/annurev-fluid-010518-040342.
- 6. Washburn, W. (1921). The Dynamics of Capillary Flow. Physical Review, 17(3), 273–283.
- 7. Li, X., Xian, F. & Alexand, R. (2013). An experimental study on dynamic pore wettability. Chem. Eng. Sci. 104, 988–997. DOI: 10.1016/j.ces. 2013.10.026 .
- 8. Ramírez-Flores, J.C. & Bachmann, J. (2013) Analyzing capillary-rise method settings for contact-angle determination of granular media. J. Plant. Nutr. Soil. Sci. 176, 19–26. DOI: 10.1002/jpln.201100431.
- 9. Thakker, M., Karde, V. & Shah, D.O. (2013). Wettability measurement apparatus for porous material using the modified Washburn method. Meas. Sci. Technol. 24, 125902.
- 10. Thomas, E.A., Poritz, D.H. & Muirhead, D.L. (2013). Urine Advancing Contact Angle on Several Surfaces. J. Adhes. Sci. Technol. 2 3(19), 17–23. DOI: 10.1163/016942409X125085 17390879.
- 11. Yang, B., Song, S. & Lopez-Valdivieso, A. (2014). Effect of Particle Size on the Contact Angle of Molybdenite Powders. Mineral Processing & Extractive Metall. Rev. 35, 208–215. DOI: 10.1080/08827508.2013.763802.
- 12. Tamayol, A. & Bahrami, M. (2011). Transverse permeability of fibrous porous media. Phys. Rev E. 83, 046314. DOI: 10.1103/PhysRevE.83.046314.
- 13. Guo, P. (2012). Dependency of Tortuosity and Permeability of Porous Media on Directional Distribution of Pore Voids. Transp. Porous Med. 95(20 12), 285–303. DOI: 10.1007/s11242-012-0043-8.
- 14. Li, K. (2010). More general capillary pressure and relative permeability models from fractal geometry. J. Contam. Hydrol. 111, 13–24. DOI: 10.1016/j.jconhyd.2009.10.005.
- 15. Cai, J. & Yu, B. (2011). A Discussion of the Effect of Tortuosity on the Capillary Imbibition in Porous Media. Transp. Porous Med. 89(2), 251–263. DOI: 10.1007/s11242-011-9767-0.
- 16. Cai, J., Hu, X., & Standnes, D.C. (2012). An analytical model for spontaneous imbibition in fractal porous media including gravity. Colloids Surface A. 414, 228–233. DOI: 10.1016/j.colsurfa.2012.08.047.
- 17. Dang, T. & Hupka, J. (2005). Characterization of porous materials by capillary rise method. Physicochem. Probl. Mi. 39(205), 47–65.
- 18. Stevens, N., Ralston, J. & Sedev, R. (2009). The uniform capillary model for packed beds and particle wettability. J. Colloid Interf. Sci. 337(1),162–169. DOI: 10.1016/j.jcis.2009.04.086.
- 19. Kramer, G.J. (1998). Static liquid hold-up and capillary rise in packed beds. Chem. Eng. Sci. 16(29), 85–92. DOI: 10.1016/S0009-2509(98)80001-8.
- 20. Chan, T.Y., Hsu, C.S. & Lin, S.T. (2004). Factors Affecting the Significance of Gravity on the Infiltration of a Liquid into a Porous Solid. J. Porous Mat. 11(4), 273–277. DOI: 10.1023/B: JOPO.0000046354.27879.9b.
- 21. Fries, N. & Dreyer, M. (2008). An analytic solution of capillary rise restrained by gravity. J. Colloid Interf. Sci. 320(1), 259–263. DOI: 10.1016/j.jcis.2008.01.009 .
- 22. Torquato, S. (2002). Random Heterogeneous Materials: Microstructure and Macroscopic Properties. NewYork, USA: Springer. DOI: 10.1115/1.1483342.
- 23. Elsner, A., Wagner, A. & Aste, T. (2009). Specific Surface Area and Volume Fraction of the Cherry-Pit Model with Packed Pits. J. Phys. Chem. B. 113(22), 7780–7784. DOI: 10.1021/jp806767m.
- 24. Hermann, H. (2010). Effective dielectric and elastic properties of nanoporous low-k media. Modelling Simul. Mater. Sci. Eng. 18(5), 055007. DOI: 10.1088/0965-0393/18/5/055007.
- 25. Li, K. & Zhao, H. (2012). Fractal Prediction Model of Spontaneous Imbibition Rate. Transp. Porous. Med. 91(2), 363–376. DOI: 10.1007/s11242-011-9848-0.
- 26. Masoodi, R., Languri, E. & Ostadhossein, A. (2013). Dynamics of liquid rise in a vertical capillary tube. J. Colloid Interf. Sci. 389(1), 268–272. DOI: 10.1016/j.jcis.2012.09.004.
- 27. John, C.B. (1993). Wettability. New York, USA: Elsevier.
- 28. Carman, P.C. (1937). Fluid flow through granular beds. Trans. Inst. Chem. Eng, 15, 32–48.
- 29. Hermann, H. & Elsner, A. (2014). Geometric Models for Isotropic Random Porous Media: A Review. Adv. Mater. Sci. Eng. (2014), 1–16. DOI: 10.1155/2014/562874.
- 30. Cai, J., Yu, B. & Zou, M. (2010). Fractal Characterization of Spontaneous Co-current Imbibition in Porous Media. Energ. Fuel. 24(2010), 1860–1867. DOI: 10.1021/ef901413p.
- 31. Zhmud, B.V., Tiberg, F. & Hallstensson, K. (2000). Dynamics of Capillary Rise. J. Colloid Interf. Sci. 228(2), 263–269. DOI: 10.1006/jcis.2000.6951.
- 32. Li, G. Chen, X. & Huang, Y. (2015). Contact Angle Determined by Spontaneous Imbibition in Porous Media: Experiment and Theory. J. Disper. Sci. Technol. 36(6), 772–777. DOI: 10.1080/01932691.2014.921627.
- 33. Olafuyi, O.A., Cinar, Y. & Knackstedt, M.A. (2007). Spontaneous imbibition in small cores. SPE Asia Pacific Oil and Gas Conference and Exhibition. 30 October 2007. Jakarta, Indonesia. DOI: 10.2118/109724-MS.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2fd97ae0-43b1-4657-a825-74853b4fb922