PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Complexity of two-phase flow dynamics using the recurrence and high speed video analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During flow boiling in a system with small (mini/micro) channels, several instabilities may occur at the same time, which overlap each other  such a phenomenon complicates the analysis of boiling dynamics. The above mentioned processes cause that the fluctuation of recorded signals occur on various time scales. Although many criteria for the stability of two-phase flows are available, their practical application is limited (they need many recorded parameter of two phase flow). Methods which we are looking for should allow flow pattern identification based on a small number (or single) recorded signals. The paper presents a new approach to the recurrence plot method combined with Principal Component Analysis and Self-Organizing Map analysis. The single signal of pressure drop oscillations has been analyzed and used for flow pattern identification. New method of correlation analysis of flow patterns on video frames has been presented and used for flow pattern identification. The obtained results show that pressure drop oscillations and high speed video contain enough information about flow pattern for flow pattern identification.
Rocznik
Strony
73--81
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Bialystok University of Technology, Faculty of Mechanical Engineering, Wiejska 45C, Bialystok 15-351, Poland
  • Bialystok University of Technology, Faculty of Mechanical Engineering, Wiejska 45C, Bialystok 15-351, Poland
  • Bialystok University of Technology, Faculty of Mechanical Engineering, Wiejska 45C, Bialystok 15-351, Poland
  • Bialystok University of Technology, Faculty of Mechanical Engineering, Wiejska 45C, Bialystok 15-351, Poland
  • Bialystok University of Technology, Faculty of Mechanical Engineering, Wiejska 45C, Bialystok 15-351, Poland
Bibliografia
  • [1] Ruspini, L.C., Marcel, C.P., & Clausse, A. (2014). Two-Phase Flow Instabilities: A Review. International Journal of Heat and Mass Transfer, 71, 521–548. doi: 10.1016/j.ijheatmasstransfer.2013.12.047
  • [2] Kennedy, J.E., Roach, G.M., Dowling, M.F., Abdel-Khalik, S.I., Ghiaasiaan, S.M., Jeter, S.M., & Quershi, Z.H. (2000). The Onset of Flow Instability in Uniformly Heated Horizontal Microchannels. J. Heat Transfer, 122, 118–125. doi: 10.1115/1.521442
  • [3] Kandlikar, S.G. (2002). Fundamental Issues Related to Flow Boiling in Mini channels and Microchannels. Experimental Thermal and Fluid Science, 26, 389–407. doi: 10.1016/s0894-1777(02)00150-4
  • [4] Kandlikar, S., Steinke, M., Tian, S., & Campbell, L. (2001). HighSpeed Photographic Observation of Flow Boiling of Water in Parallel Mini-Channels. Proceedings of NHTC’01 35th National Heat Transfer Conference, Anaheim, California
  • [5] Qu, W., & Mudawar, I. (2003). Measurement and Prediction of Pressure Drop in Two-Phase Micro-Channel Heat Sinks. International Journal of Heat and Mass Transfer, 46, 2737–2753. doi:10.1016/S0017-9310 (03)00044-9
  • [6] Brutin, D., Topin, F., & Tadrist, L. (2003). Experimental Study of Unsteady Convective Boiling in Heated Minichannels. J. Heat Transfer, 46, 2957–2965. doi:10.1016/S0017-9310(03)00093-0
  • [7] Hetsroni, G., Mosyak, A., Segal, Z., & Pogrebnyak, E. (2003). Two-Phase Flow Patterns in Parallel Micro-Channels. International Journal of Multiphase Flow, 29, 341–360. doi: 10.1016/S0301-9322(03)00002-8
  • [8] Bergles, A.E., Lienhard V. J.H., Kendall, G.E., & Griffith, P. (2003). Boiling and Evaporation in Small Diameter Channels. Heat Transfer Engineering, 24, 18–40. doi: 10.1080/01457630304041
  • [9] Tadrist, L. (2007). Review on Two-Phase Flow Instabilities in Narrow Spaces. International Journal of Heat and Fluid Flow, 28, 54−62. doi: 10.1016/j.ijheatfluidflow.2006.06.004
  • [10] Grzybowski, H., & Mosdorf, R. (2018). Dynamics of Pressure Drop Oscillations during Flow Boiling inside Minichannel. International Communications in Heat and Mass Transfer, 95, 25–32. doi:10.1016/j.icheatmasstransfer.2018.03.025
  • [11] Rafałko, G., Zaborowska, I., Grzybowski, H., & Mosdorf, R. (2020). Boiling Synchronization in Two Parallel Mini channels - Image Analysis. Energies, 13, 1409. doi: 10.3390/en13061409
  • [12] Yarin, L.P., Mosyak, A., & Hetsroni, G. (2009) Fluid Flow, Heat Transfer and Boiling in Micro-Channels; Heat and Mass Transfer; Springer-Verlag: Berlin Heidelberg, doi:10.1007/978-3-540-78755-6
  • [13] Fogg, D., & Goodson, K. (2009). Bubble-Induced Water Hammer and Cavitation in Microchannel Flow Boiling. J. Heat Transfer, 131, 1−12. doi:10.1115/1.3216381
  • [14] Boure, J.A., Bergles, A.E., & Tong, L.S. (1973). Review of TwoPhase Flow Instability. Nuclear Engineering and Design, 25,165−192. doi: 10.1016/0029-5493 (73)90043-5
  • [15] Clark, M.D., Weibel, J.A., & Garimella S.V. (2023), Impact of pressure drop oscillations and parallel channel instabilities on microchannel flow boiling and critical heat flux. International Journal of Multiphase Flow, 161, 104380. doi: 10.1016/j.ijmultiphaseflow.2023.104380
  • [16] Chu, A.W., Liu, B.Y., Pan, C.L., Zhu, D.H., & Yang, E.X. (2022). Identification of boiling flow pattern in narrow rectangular channel based on TFA-CNN combined method. Flow Measurement and Instrumentation, 83, 102086. doi: 10.1016/j.flowmeasinst.2021.102086
  • [17] Wang, B., Hu, T., He, Y., Rodionov, N., & Zhu, J. (2022). Dynamic instabilities of flow boiling in micro-channels: A review. Applied Thermal Engineering, 214, 118773. doi: 10.1016/j.applthermaleng .2022.118773
  • [18] Zhu, L., Ooi, Z.J., Zhang, T., Brooks, C.S., & Pan, L. (2023). Identification of flow regimes in boiling flow with clustering algorithms: An interpretable machine-learning perspective. Applied Thermal Engineering, 228, 120493. doi: 10.1016 /j.applthermaleng.2023.120493
  • [19] Zaborowska, I. (2023). Experimental studies and numerical identification of the dynamics of two-phase flow patterns in boiling in mini- and micro-channels. PhD thesis, Bialystok University of Technology.
  • [20] Zbilut, J.P., & Webber, C.L. (1992). Embeddings and Delays as Derived from Quantification of Recurrence Plots. Physical Letters A, 171, 199–203. doi: 10.1016/0375-96 01(92)90426-M
  • [21] Gao, Z.-K., Jin, N.-D., & Wang, W.-X. (2014). Nonlinear analysis of gas-water/oil-water two-phase flow complex networks. Springer: Berlin, Heidelberg. doi: 10.1007/978-3-642-38373-1_1
  • [22] Gao, Z.-K., Zhang, X.-W., Jin, N.-D., Donner, R.V., Marwan, N., & Kurths, J. (2013). Recurrence Networks from Multivariate Signals for Uncovering Dynamic Transitions of Horizontal Oil-Water Stratified Flows. Europhysics Letters, 103(5), 50004. doi: 10.1209/0295-5075/103/50004
  • [23] Zaborowska, I., Grzybowski, H., Rafałko, G., & Mosdorf, R. (2021). Boiling dynamics in parallel minichannel system with different inlet solutions, International Journal of Heat and Mass Transfer, 165, 1–10. doi: 10.1016/j.ijheatmasstransfer.2020.120655
  • [24] Marwan, N. Cross Recurrence Plot Toolbox for MATLAB®, Ver.5.22. http://Tocsy.Pik-Potsdam.de/ CRPtoolbox/ [accessed 08 Feb. 2024].
  • [25] Rafałko, G. (2023). Application of image analysis to identify and investigate the dynamics of two-phase flow patterns. PhD thesis, Bialystok University of Technology.
  • [26] Rafałko, G., Mosdorf, R., & Górski, G. (2020). Two-phase flow pattern identification in mini channels using image correlation analysis, International Communications in Heat and Mass Transfer, 113, 1–9. doi: j.icheatmasstransfer.2020.104508
  • [27] Rafałko, G., Grzybowski, H., & Mosdorf, R. (2022). An image analysis method of liquid phase distribution during boiling in parallel mini channels, International Communications in Heat and Mass Transfer, 139, 1–10. doi: 10.1016/j.icheatmasstransfer.2022.106453
  • [28] Lu, R. (2017). Light Scattering Technology for Food Property, Quality and Safety Assessment. CRC Press. doi: 10.1201/b20220
  • [29] Dzienis, P., Zaborowska, I., & Mosdorf, R. (2022). JRP analysis of synchronization loss between signals recording during bubble departures. Nonlinear Dynamics, 108, 433–444. doi: 10.1007/s11071-022-07217-9
  • [30] Gruszczyńska, I., Mosdorf, R., Sobaniec, P., Żochowska-Sobaniec, M., & Borowska, M. (2019). Epilepsy identification based on EEG signal using RQA method, Advances in Medical Sciences, 64(1),58–64. doi:10.1016/j.advms.2018.08.003
  • [31] Łępicka, M., Grądzka-Dahlke, M., Zaborowska, I., Górski, G., & Mosdorf, R. (2022). Recurrence analysis of coefficient of friction oscillations in DLC-coated and non-coated Ti6Al4V titanium alloy. Tribology International, 165, 107342. doi: 10.1016/j.triboint. 2021. 107342
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2fd5d55e-2a7e-4a01-96e6-82972f257908
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.