PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling methodology of piston pneumatic air engine operation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a mathematical model describing the operation of a piston pneumatic air engine. Compressed air engines are an alternative to classic combustion solutions as they do not directly emit toxic exhaust components. In the study, a modified internal combustion piston engine was adopted as pneumatic engine. The mathematical model was divided on the two subsystems, that is, mechanical and pneumatic. The mechanical subsystem describes a transformation of compressed air supply process parameters to energy transferred to the piston and further the conversion of the translational to rotary motion; in turn, in the pneumatic part, the lumped elements method was used. Calculations were carried out using the Matlab-Simulink software, resulting in the characteristics of external and economic indicators. The presented mathematical model can be ultimately developed with additional elements, such as the intake or exhaust system, as well as timing system control.
Rocznik
Strony
271--278
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45c, 15-351 Białystok, Poland
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45c, 15-351 Białystok, Poland
Bibliografia
  • 1. A policy framework for climate and energy in the period from 2020 to 2030. 2014. Communication From The Commission To The European Parliament, The Council, The European Economic And Social Committee And The Committee Of The Regions.
  • 2. Allam S., Zakaria M. (2018), Experimental investigation of compressed air engine performance, International Journal of Engineering Inventions, 7(1), 13–20.
  • 3. Badr O., Probert S.D., O'Callaghan P.W. (1985), Multi-vane expanders: internal-leakage losses, Applied Energy, 20(1), 1–46.
  • 4. Borawski A. (2015), Modification of a fourth generation LPG installation improving the power supply to a spark ignition engine, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 17(1), 1–6.
  • 5. Borawski A. (2016), Suggested research method for testing selected tribological properties of friction components in vehicle braking systems, Acta Mechanica et Automatica, 10(3), 223–226.
  • 6. Borawski A. (2019), Common methods in analysing the tribological properties of brake pads and discs – a review, Acta Mechanica et Automatica, 13(3), 189–199.
  • 7. Brejaud P., Higelin P., Charlet A. et al. (2011), Convective Heat Transfer in a Pneumatic Hybrid Engine, Oil & Gas Science and Technology, 66(6), 1035–1051.
  • 8. Commission Regulation (EU) 2017/1154 of 7 June 2017 amending Regulation (EU) 2017/1151 supplementing Regulation (EC) No 715/2007 of the European Parliament and of the Council on typeapproval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information, amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 and Commission Regulation (EU) No 1230/2012 and repealing Regulation (EC) No 692/2008 and Directive 2007/46/EC of the European Parliament and of the Council as regards real-driving emissions from light passenger and commercial vehicles (Euro 6), Official Journal of the European Union, L175, 7.7.2017, page 708.
  • 9. Czarnigowski J. (2012), Teoretyczno-empiryczne studium modelowania impulsowego wtryskiwacza gazu, Politechnika Lubelska, Lublin.
  • 10. Dimitrova Z., Marechal F. (2015), Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization, Applied Energy, 151, 168–177.
  • 11. Duk M., Czarnigowski J. (2012), The method for indirect identification gas injector opening delay time, Przeglad Elektrotechniczny, 88(10b), 59–63.
  • 12. Dvorak L., Fojtasek K., Rehacek V. (2017), Calculations of parameters and mathematical model of rotary air motor, EPJ Web of Conferences, 143, 02018, 4p.
  • 13. Fang Y.D., Lu Y.J., Yu X.L., Roskilly A.P. (2018), Experimental study of a pneumatic engine with heat supply to improve the overall performance, Applied Thermal Engineering, 134, 78–85.
  • 14. Fox J.T., Yang K., Hunsicker R. (2019), Diesel Particulate Filter Cleaning Effectiveness: Estimated Ash Loading, Quantified Particulate Removal, and Post-cleaning Filter Pressure Drop. Emission Control Science and Technology, 1–11 (on-line).
  • 15. Grigor’ev M.A., Naumovich N.I., Belousov E.V. (2015), A traction electric drive for electric cars, Russian Electrical Engineering, 86(12), 731–734.
  • 16. Heywood B.H. (1988), Internal combustion engine fundamentals, McGraw-Hill Series in Mechanical Engineering, New York, USA.
  • 17. http://wltpfacts.eu/ [online cit.: 2019.11.10].
  • 18. http://www.engineair.com.au/ [online cit.: 2019.11.10].
  • 19. http://www.jawa-50.cz/clanek/jawa-23-mustang-technicke-udaje.html [online cit.: 2019.11.10].
  • 20. https://www.mdi.lu/ [online cit.: 2019-03.01].
  • 21. Jeuland N., Montagne X., Duret P. (2004), New HCCI/CAI combustion process development: Methodology for determination of relevant fuel parameters, Oil & Gas Science and Technology, 59(6),571–579.
  • 22. Kalekin V.S., Kalekin D.V., A. N. Nefedchenko A.N. (2014), A Mathematical Model of a Piston Pneumatic Engine with Self-Acting air Distribution, Chemical and Petroleum Engineering, 50(1-2), 91– 98.
  • 23. Kaminski Z. (2013), Experimental and numerical studies of mechanical subsystem for simulation of agricultural trailer air braking systems, International Journal of Heavy Vehicle System, 20(4), 289– 311.
  • 24. Kaminski Z. (2014), Mathematical modelling of the trailer brake control valve for simulation of the air brake system of farm tractors equipped with hydraulically actuated brakes, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 16(4), 637–643.
  • 25. Librovich B.V., Nowakowski A.F. (2004), Analysis, design, and modeling of a rotary vane engine (RVE), Journal of Mechanical Design, 126(4), 711–720.
  • 26. Michael M., Voser C., Onder C et al. (2012), Design methodology of camshaft driven charge valves for pneumatic engine starts, IFAC Proceedings, 45(30), 33–40.
  • 27. Mieczkowski G. (2017), The constituent equations of piezoelectric cantilevered three-layer actuators with various external loads and geometry, Journal of Theoretical and Applied Mechanics, 55(1), 69– 86.
  • 28. Mieczkowski G. (2018), Optimization and prediction of durability and utility features of three-layer piezoelectric transducers, Mechanika, 24(3), 335–342.
  • 29. Mieczkowski G. (2019), Criterion for crack initiation from notch located at the interface of bi-material structure, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 21(2), 301–310.
  • 30. Mieczkowski G., Borawski A., Szpica D. (2020), Static electromechanical characteristic of a three-layer circular piezoelectric transducer, Sensors, 20, 222, 14p.
  • 31. Mikulski M., Balakrishnan P.R., Doosje E. et al. (2018), Variable Valve Actuation Strategies for Better Efficiency Load Range and Thermal Management in an RCCI Engine, SAE Technical Papers, 2018-01-0254, 14p.
  • 32. Mikulski M., Wierzbicki S., Pietak A. (2015), Numerical studies on controlling gaseous fuel combustion by managing the combustion process of diesel pilot dose in a dual-fuel engine, Chemical and Process Engineering - Inzynieria Chemiczna i Procesowa, 36 (2), 225–238.
  • 33. Mitianiec W. (2008), Pneumatic two-stroke engine as an alternative power source, Journal of KONES Powertrain and Transport, 15(3), 357–366.
  • 34. Onishi S., Hong J.S., Do J.S. et al. (1979), Active thermoatmosphere combustion (A.T.A.C.) - A new combustion process for internal combustion engines, SAE Paper 790501.
  • 35. Pulawski G., Szpica D. (2015), The modelling of operation of the compression ignition engine powered with diesel fuel with LPG admixture, Mechanika, 21(6), 501–506;
  • 36. Raslavicius L., Kersys A. Makaras R. (2017), Management of hybrid powertrain dynamics and energy consumption for 2WD, 4WD, and HMMWV vehicles, Renewable and Sustainable Energy Reviews, 68(1), 380–396.
  • 37. Raslavicius L., Kersys A., Mockus S. et al. (2014), Liquefied petroleum gas (LPG) as a medium-term option in the transition to sustainable fuels and transport, Renewable & Sustainable Energy Reviews, 32, 513–525.
  • 38. Resitoglu I.A., Altinisik K., Keskin A. et al. (2020), The effects of Fe2O3 based DOC and SCR catalyst on the exhaust emissions of diesel engines, Fuel, 262, 116501.
  • 39. Semenchukova V., Grishin Y., Malastowski N. (2018), Mathematical modeling of a piston engine pneumatic start, International Russian Automation Conference (RusAutoCon), 1–4.
  • 40. Senthil Kumar J., Ramesh Bapu B.R., Sivasaravanan S. et al. (2019), Experimental studies on emission reduction in DI Diesel engine by using nano catalyst coated catalytic converter, International Journal of Ambient Energy, 1–17 (on-line).
  • 41. Simon M. (2017), Pneumatic vehicle, research and design, Procedia Engineering, 181, 200–205.
  • 42. Szpica D. (2016), The influence of selected adjustment parameters on the operation of LPG vapor phase pulse injectors, Journal of Natural Gas Science and Engineering, 34, 1127–1136.
  • 43. Szpica D. (2018a), Modelling of the operation of a Dual Mass Flywheel (DMF) for different engine-related distortions, Mathematical and Computer Modelling of Dynamical Systems, 24(6), 643–660.
  • 44. Szpica D. (2018b), Research on the influence of LPG/CNG injector outlet nozzle diameter on uneven fuel dosage, Transport, 33(1), 186– 196.
  • 45. Szpica D. (2018c), The determination of the flow characteristics of a low-pressure vapor-phase injector with a dynamic method, Flow Measurement and Instrumentation, 62, 44–55.
  • 46. Walus K.J., Wargula L., Krawiec P. et al. (2018), Legal regulations of restrictions of air pollution made by non-road mobile machinery - the case study for Europe: a review, Environmental Science and Pollution Research, 25(4), 3243–3259.
  • 47. Wargula L., Walus K. J., Krawiec P. (2018), Small engines spark ignited (SI) for non-road mobile machinery-review, Proceedings of 22nd International Scientific Conference. Transport Means 2018, T.2, 585–591.
  • 48. Zwierzchowski J. (2017), Design type air engine Di Pietro, EPJ Web Conf., 143 02149.
Uwagi
The research has been carried out within work no. S/WM/1/18 realized at Bialystok University of Technology and financed from the funding allocated for science by the Ministry of Science and Higher Education, Poland.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2fc57e57-cc98-4356-9fe5-e43b921031da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.