PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Supporting of manufacturing system based on demand forecasting tool

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: Enterprises’ decision-making could be facilitated by properly creating or choosing and implementing demand forecasting systems. Currently, there are more and more advanced forecasting algorithms based on sophisticated technologies such as artificial neural networks and machine learning. The following research paper focuses on a case study of an automotive manufacturer. The main research aim is to propose the proper demand forecasting tool and show the prospects for implementing the mentioned solution. Methods: The research paper contains the statistical analysis of a chosen time series referring to the demanded quantity of the manufactured products. To create forecasts, models based on the following forecasting algorithms were created: ARIMA, ELM (Extreme Learning Machine), and NNAR (Neural Network Autoregressive). All algorithms are based on the R programming language. All algorithms are run in the same time series where the training and testing periods were established. Results: According to the forecasts ex-post errors and FVA (forecasts value-added) analysis, the best fitting algorithm is the algorithm based on ELM. It yields the most accurate predictions. All other models fail to add value to the forecast. Specifically, the ARIMA models damage the forecast dramatically. Such significant magnitudes of negative FVA values indicate that choosing not to forecast and plan based on the sales of the same period of the previous year is a better choice. However, in the case of the ELM model, the forecasts can be worth the time, finance, and human resources put into preparing them. Conclusion: The increased accuracy of ELM forecasts can contribute to optimizing the process of reaching consensus forecasts. While unconstrained statistical forecasts tend to be overridden, not only to produce constrained forecasts incorporating various variables such as calendar events, promotional activities, supply capacity, and operational abilities, they are also overridden by planners to reflect their foreseeing of demand. The proposed solution could also be easily implemented in the resource planning process to improve it. The proposition of the resource planning process supported by the proposed forecasting system is also shown in the following paper using a BPMN 2.0 (Business Process Modelling Notation 2.0) map.
Czasopismo
Rocznik
Strony
33--48
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • Silesian University of Technology, Zabrze, Poland
  • Silesian University of Technology, Zabrze, Poland
Bibliografia
  • 1. Baryannis G., Validi S., Dani S., Antoniou G., 2019. Supply chain risk management and artificial intelligence: state of the art and future research directions. International Journal of Production Research, Vol. 57 No. 7, 2179-2202. https://doi.org/10.1080/00207543.2018.1530476
  • 2. Burtch L, 2016. SAS vs R vs Python: Which Tool Do Analytics Pros Prefer? KDnuggets. Retrieved 30 December 2020, from https://www.kdnuggets.com/2016/07/burtchworks-sas-r-python-analytics-pros-prefer.html
  • 3. Chandra C., Grabis J., 2004. Supply Chain Configuration, Concepts, Solutions, and Applications. Springer. http://doi.org/10.1007/978-1-4939-3557-4
  • 4. Chase C., 2009. Demand-Driven Forecasting: A Structured Approach to Forecasting. Hoboken, NJ: Wiley & Sons.
  • 5. Chase C., 2016. Next generation demand management. Wiley.
  • 6. Czwajda L., Kosacka-Olejnik M., Kudelska I., Kostrzewski M., Sethanan K., Pitakaso R., 2019. Application of prediction markets phenomenon as decision support instrument in vehicle recycling sector. LogForum 15(8), 266-278. http://doi.org/10.17270/J.LOG.2019.329
  • 7. Dangerfield B. J., Morris J. S., 1992. Top-down or bottom-up: Aggregate versus disaggregate extrapolations. International Journal of Forecasting, 8(2), 233-241. https://doi.org/10.1016/0169-2070(92)90121-O
  • 8. Dangerfield B.J., Morris J.S., 1988. An empirical evaluation of top-down and bottom-up forecasting strategies. Proceedings of the 1988 Meeting of Western Decision Sciences Institute. 322-324.
  • 9. Davenport TH., Ronanki R., 2018. Artificial intelligence for the real world. Harvard Bus Rev 96:108–116
  • 10. David F., 2011. Strategic management. Prentice Hall.
  • 11. Dubey R., Gunasekaran A., Childe S.J., Bryde, D.J., Giannakis M., Foropon C., Hazen, B.T., 2020. Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: a study of manufacturing organizations. International Journal of Production Economics. https://doi.org/10.1016/j.ijpe.2019.107599
  • 12. Dujak D., Sebalj D., Koliński A., 2019. Towards exploring bullwhip effect in natural gas supply chain. LogForum 15(4), 51-62. http://doi.org/10.17270/J.LOG.2019.369
  • 13. Dwivedi Y.K., Hughes L., Ismagilova E., Aarts G., Coombs C., Crick T., Duan Y., Dwivedi R., Edwards J., Eirug A., Galanos V., Ilavarasan P.V., Janssen M., Jones P., Kar A.K., Kizgin H., Kronemann B., Lal B., Lucini B., Williams M.D., 2019. Artificial intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
  • 14. Fogarty D., Blackstone J., Hoffmann T., 1994. Production & inventory management. South-Western Publishing Co.
  • 15. Gische Ch., West S.G., Voelkle M.C., 2020. Forecasting Causal Effects of Interventions versus Predicting Future Outcomes. Structural Equation Modeling: A Multidisciplinary Journal. https://doi.org/10.1080/10705511.2020.1780598
  • 16. Gunasekaran A., Papadopoulos T., Dubey R., Wamba S.F., Childe S.J., Hazen B., Akter S., 2017. Big data and predictive analytics for supply chain and organizational performance. J Bus Res 70:308–317. https://doi.org/10.1016/j.jbusres.2016.08.004
  • 17. Gupta S., Modgil S., Bhattacharyya S., Bose I., 2021. Artificial intelligence for decision support systems in the field of operations research: review and future scope of research. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03856-6
  • 18. Huang G., Zhu Q., Siew C., 2004. Extreme learning machine: a new learning scheme of feedforward neural networks. 2004 IEEE International Joint Conference on Neural Networks, IEEE Cat. No.04CH37541, 2, 985-990 vol.2. https://doi.org/10.1109/IJCNN.2004.1380068
  • 19. Hughes P., and Morgan N., 1967. The Use of Computers in Forecasting. Journal of the Royal Statistical Society. Series D, The Statistician, 17(3), 279-299. https://doi.org/10.2307/2986721.
  • 20. Hyndman R.J., Athanasopoulos G., 2018. Forecasting: Principles and Practice. OTexts.
  • 21. Ivanov D., 2020. Predicting the impacts of epidemic outbreaks on global supply chains: a simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. Transportation Research Part E: Logistics and Transportation Review, Vol. 136, 101922. https://doi.org/10.1016/j.tre.2020.101922.
  • 22. Khandelwal I., Adhikari R., Verma G., 2015. Time Series Forecasting Using Hybrid ARIMA and ANN Models Based on DWT Decomposition. Procedia Computer Science Volume 48, Pages 173-179. https://doi.org/10.1016/j.procs.2015.04.167.
  • 23. Krzyżaniak S., 2017. Influence of delivery quantity on service level in the stock replenishment system based on reorder level for irregular distributions of demand. LogForum 13(4), 415-427. http://dx.doi.org/10.17270/J.LOG.2017.4.3
  • 24. Lee M.K., 2018. Understanding perception of algorithmic decisions: fairness, trust, and emotion in response to algorithmic management. Big Data Soc 5:1–16. https://doi.org/10.1177%2F2053951718756684
  • 25. Li P., Ma C., Ning J., Wang Y., Zhu C., 2019. Analysis of Prediction Accuracy under the Selection of Optimum Time Granularity in Different Metro Stations. Sustainability, 11(19), 5281. MDPI AG. Retrieved from http://dx.doi.org/10.3390/su11195281
  • 26. Liu H., Mi X., Li Y., 2018. An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm. Renewable Energy, Volume 123, Pages 694-705. https://doi.org/10.1016/j.renene.2018.02.092
  • 27. Mahbub N., Paul M., 2013. A neural approach to product demand forecasting. International Journal of Industrial and Systems Engineering 15(1):1-18. http://dx.doi.org/10.1504/IJISE.2013.055508
  • 28. Malladi K.T., Sowlati T., 2018. Biomass logistics: A review of important features, optimization modeling and the new trends. Renewable and Sustainable Energy Reviews Volume 94, Pages 587-599. https://doi.org/10.1016/j.rser.2018.06.052
  • 29. Mesjasz L., 2011. Forecasting of demand for direct production materials as the element of supply logistics of thermal power plants. LogForum 7(2), 51-61.
  • 30. MLP function - RDocumentation. 2021. Rdocumentation.org. Retrieved 5 January 2021, from https://www.rdocumentation.org/packages/nnfor/versions/0.9.6/topics/mlp
  • 31. Modgil S., Singh R., Hannibal C., 2021. Artificial intelligence for supply chain resilience: learning from Covid-19. The International Journal of Logistics Management. https://doi.org/10.1108/ijlm-02-2021-0094
  • 32. Muniz L.R., Conceição S.V., Rodrigues L.F., de Freitas Almeida J.F., Affonso T.B., 2020. Spare parts inventory management: a new hybrid approach. International Journal of Logistics Management, Vol. 32 No. 1, 40-67. http://dx.doi.org/10.1108/IJLM-12-2019-0361
  • 33. Narasimhan S., McLeavey D., Billington P., 2007. Production planning and inventory control. Prentice-Hall of India.
  • 34. Niazkar M., Turrkan G.E., Niazkar H.R. and Turrkan Y.A., 2020. Assessment of Three Mathematical Prediction Models for Forecasting the COVID-19 Outbreak in Iran and Turkey. Computional and Mathematical Methods in Medicine. https://doi.org/10.1155/2020/7056285
  • 35. Orcutt G., Watts H., Edwards J., 1968. Data Aggregation and Information Loss. The American Economic Review, 58(4), 773-787. http://www.jstor.org/stable/1815532
  • 36. Phan P., Wright M., Soo-Hoon L., 2017. Of robots, artificial intelligence, and work. Academy of Management Perspectives Vol. 31, No. 4 31:253–255. https://doi.org/10.5465/amp.2017.0199
  • 37. Posen H.E., Levinthal D.A., 2012. Chasing a Moving Target: Exploitation and Exploration in Dynamic Environments. Management Science. 58. https://doi.org/10.1287/mnsc.1110.1420
  • 38. Szozda N., Werbyńska-Wojciechowska S., 2013. Influence of the demand information quality on planning process accuracy in supply chain. Case studies, LogForum 9(2), 73-90.
  • 39. Tarallo E., Akabane G., Shimabukuro C., Mello J., Amancio D., 2019. Machine Learning in Predicting Demand for Fast-Moving Consumer Goods: An Exploratory Research. IFAC-Papersonline, 52(13), 737-742. https://doi.org/10.1016/j.ifacol.2019.11.203
  • 40. Vokhmyanina A., Zhuravskaya M., Osmólski W., 2018. The issue of bullwhip-effect evaluating in supply chain management, LogForum vol. 13. http://dx.doi.org/10.17270/J.LOG.280
  • 41. Wamba S.F., Queiroz M.M., Wu L., Sivarajah U., 2020. Big data analytics-enabled sensing capability and organizational outcomes: assessing the mediating effects of business analytics culture. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03812-4
  • 42. Zhang G., Patuwo B.E., Hu, M.Y., 1998. Forecasting with artificial neural networks. International Journal of Forecasting, 14(1), 35-62. https://doi.org/10.1016/S0169-2070(97)00044-7
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2fc3c432-fdf7-4415-8745-acb49347e5f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.