Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Massive multiple-input multiple-output (MIMO) is considered to be an emerging technique in wireless communication systems, as it offers the ability to boost channel capacity and spectral efficiency. However, a massive MIMO system requires huge base station (BS) antennas to handle users and suffers from inter-cell interference that leads to pilot contamination. To cope with this, time-shifted pilots are devised for avoiding interference between cells, by rearranging the order of transmitting pilots in different cells. In this paper, an adaptive-elephant-based spider monkey optimization (adaptive ESMO) mechanism is employed for time-shifted optimal pilot scheduling in a massive MIMO system. Here, user grouping is performed with the sparse fuzzy c-means (Sparse FCM) algorithm, grouping users based on such parameters as large-scale fading factor, SINR, and user distance. Here, the user grouping approach prevents inappropriate grouping of users, thus enabling effective grouping, even under the worst conditions in which the channel operates. Finally, optimal time-shifted scheduling of the pilot is performed using the proposed adaptive ESMO concept designed by incorporating adaptive tuning parameters. The efficiency of the adaptive ESMO approach is evaluated and reveals superior performance with the highest achievable uplink rate of 43.084 bps/Hz, the highest SINR of 132.9 dB, and maximum throughput of 2.633 Mbps.
Rocznik
Tom
Strony
10--21
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Department of ECE, KU College of Engineering and Technology, Kakatiya University, Warangal, Telangana, India
autor
- Department of ECE, KU College of Engineering and Technology, Kakatiya University, Warangal, Telangana, India
Bibliografia
- [1] I. A. Khan, „Robust signal detection scheme for 5G massive multiuser MIMO systems", IEEE Trans. Veh. on Technol., vol. 67, pp. 9597-9604, 2018 (DOI: 10.1109/TVT.2018.2858922).
- [2] F. Rusek et al., „Scaling up MIMO: Opportunities and challenges with very large arrays", IEEE Sig. Process, vol. 30, pp. 40-60, 2013 (DOI: 10.1109/MSP.2011.2178495).
- [3] S. Biswas, J. Xue, F. A. Khan, and T. Ratnarajah, „Performance analysis of correlated massive MIMO systems with spatially distributed users", IEEE Syst. J., vol. 12, pp. 1850-1861, 2016 (DOI: 10.1109/JSYST.2016.2594155).
- [4] T. Marzetta, „Noncooperative cellular wireless with unlimited numbers of base station antennas", IEEE Trans. on Wirel. Commun., vol. 9, no. 11, pp. 3590-3600, 2010 (DOI: 10.1109/TWC.2010.092810.091092).
- [5] X. Zhu, L. Dai, and Z. Wang, „Graph coloring based pilot allocation to mitigate pilot contamination for multi-cell massive MIMO systems", IEEE Commun. Lett., vol. 19, no. 10, pp. 1842-1845, 2015 (DOI: 10.1109/LCOMM.2015.2471304).
- [6] W. A. Mahyiddin, P. A. Martin, and P. J. Smith, „Pilot contamination reduction using time-shifted pilots in finite massive MIMO systems", in Proc. 2014 IEEE 80th Vehicular Technol. Conf. VTC2014-Fall 2014, Vancouver, BC, Canada, 2014 (DOI: 10.1109/VTCFall.2014.6966130).
- [7] H. Yin, D. Gesbert, M. C. Filippou, and Y. Liu, „Decontaminating pilots in massive MIMO systems", in Proc. of IEEE Int. Conf. on Commun. ICC 2013, Budapest, Hungary, 2013, pp. 3170-3175 (DOI: 10.1109/ICC.2013.6655031).
- [8] R. Muller, L. Cottatellucci, and M. Vehkapera, „Blind pilot decontamination", IEEE J. of Selec. Topics in Sig. Process., vol. 8, no. 5, pp. 773-786, 2014 (DOI: 10.1109/JSTSP.2014.2310053).
- [9] R. Mochaourab, E. Bjornson, and M. Bengtsson, „Pilot clustering in asymmetric massive MIMO networks", in Proc. of the IEEE 16th Int. Worksh. on Sig. Process. Adv. in Wirel. Commun. SPAWC 2015, Stockholm, Sweden, 2015 (DOI: 10.1109/SPAWC.2015.7227034).
- [10] A. Ashikhmin and T. L. Marzetta, „Pilot contamination precoding in multi-cell large-scale antenna systems", in Proc. of the IEEE Int. Symp. on Inform. Theory Proceedings ISIT 2012, Cambridge, MA, USA, 2012, vol. 1, pp. 1137-1141, 2012 (DOI: 10.1109/ISIT.2012.6283031).
- [11] L. Liangbin, A. Ashikhmin, and T. L. Marzetta, „Pilot contamination precoding for interference reduction in large-scale antenna systems", in Proc. of the 51th Ann. Allerton Conf. on Commun., Control, and Comput. Allerton CCC 2013, Monticello, IL, USA, 2013, vol. 2, no. 2, pp. 226-232 (DOI: 10.1109/Allerton.2013.6736528).
- [12] T. M. Nguyen and L. B. Le, „Joint pilot assignment and resource allocation in multicell massive MIMO network: Throughput and energy efficiency maximization", in Proc. of the IEEE Wirel. Commun. and Network. Conf. WCNC 2015, New Orleans, LA, USA, 2015, vol. 9, pp. 393-398 (DOI: 10.1109/WCNC.2015.7127502).
- [13] H. V. Cheng, E. Bjornson, and E. G. Larsson, „Optimal pilot and payload power control in single-cell massive MIMO systems", IEEE Trans. on Sig. Process., vol. 65, no. 9, pp. 2363-2378, 2017 (DOI: 10.1109/TSP.2016.2641381).
- [14] H. T. Dao and S. Kim, „Pilot power allocation for maximizing the sum rate in massive MIMO systems", IET Commun., vol. 12, no. 11, pp. 1367-1372, 2018 (DOI: 10.1049/iet-com.2017.1407).
- [15] S. Jin et al., „On massive MIMO zero-forcing transceiver Rusing time-shifted pilots", IEEE Trans. on Veh. Technol., vol. 65, no. 1, pp. 59-74, 2016 (DOI: 10.1109/TVT.2015.2391192).
- [16] X. Xiong, B. Jiang, X. Gao, and X. You, „QoS-guaranteed user scheduling and pilot assignment for large-scale MIMO-OFDM systems", IEEE Trans. on Veh. Technol., vol. 65, no. 8, pp. 6275-6289, 2015 (DOI: 10.1109/TVT.2015.2477683).
- [17] X. Dai, „Optimal training design for linearly time-varying MIMO/OFDM channels modeled by a complex exponential basis expansion", IET Commun., vol. 1, no. 5, pp. 945-953, 2007 (DOI: 10.1049/iet-com:20045301).
- [18] B. Akgun, M. Krunz, and O. O. Koyluoglu, „Vulnerabilities of Massie MIMO systems to pilot contamination attacks", IEEE Trans. on Inform. Foren. and Secur., vol. 14, no. 5, pp. 1251-1263, 2018 (DOI: 10.1109/TIFS.2018.2876750).
- [19] Y. Wu, C.-K. Wen, W. Chen, S. Jin, R. Schober, and G. Caire, „Data-aided secure massive MIMO transmission under the pilot contamination attack", IEEE Trans. on Commun., vol. 67, no. 7, pp. 4765-4781, 2019 (DOI: 10.1109/TCOMM.2019.2907943).
- [20] J. Fan, W. Li, and Y. Zhang, „Pilot contamination mitigation by fractional pilot reuse with threshold optimization in massive MIMO systems", Digit. Sig. Process., vol. 78, pp. 197-204, 2018 (DOI: 10.1016/j.dsp.2018.02.011).
- [21] O. A. Saraereh, I. Khan, B. M. Lee, and A. Tahat, „Efficient pilot decontamination schemes in 5G massive MIMO systems", Electronics, vol. 8, no. 1, pp. 55, 2019 (DOI: 10.3390/electronics8010055).
- [22] I. E. Shaalan, A. A. Khattaby, and A. S. Dessouki, „A new joint TSPA/WGC pilot contamination reduction strategy based on exact graph coloring grouping algorithm", IEEE Access, vol. 7, pp. 150552-150564, 2019 (DOI: 10.1109/ACCESS.2019.2947665).
- [23] Y. K. Hua and W. Chang, „Time shifted pilots scheme for full-duplex massive MIMO systems", IEEE Trans. on Veh. Technol., vol. 68, no. 3, pp. 3022-3026, 2019 (DOI: 10.1109/TVT.2019.2893547).
- [24] A. Salh, L. Audah, N. S. M. Shah, and S. A. Hamzah, „Mitigating pilot contamination for channel estimation in multi-cell Massie MIMO systems", Wirel. Pers. Commun., vol. 112, pp. 1643-1658, 2020 (DOI: 10.1007/s11277-020-07120-9).
- [25] T. Wei, W. Feng, N. Ge, and J. Lu, „Optimized time-shifted pilots for maritime massive MIMO communication systems", in Proc. 26th Wirel. and Opt. Commun. Conf. WOCC 2017, Newark, NJ, USA, 2017 (DOI: 10.1109/WOCC.2017.7929003).
- [26] Y. Wu, T. Liu, M. Cao, L. Li, and W. Xu, „Pilot contamination reduction in massive MIMO systems based on pilot scheduling", EURASIP J. on Wirel. Commun. and Network., 2018, article no. 21, 2018 (DOI: 10.1186/s13638-018-1029-1).
- [27] X. Chang, Q. Wang, Y. Liu, and Y. Wang, „Sparse regularization In fuzzy c-means for high-dimensional data clustering", IEEE Trans. on Cybernet., vol. 47, no. 9, pp. 2616-2627, 2017 (DOI: 10.1109/TCYB.2016.2627686).
- [28] G. G. Wang, S. Deb, and L. D. S. Coelho, „Elephant herding optimization", in Proc. of 3rd Int. Symp. on Comput. and Business Intell. ISCBI 2015, Bali, Indonesia, 2015 (DOI: 10.1109/ISCBI.2015.8).
- [29] J. C. Bansal, H. Sharma, S. S. Jadon, and M. Clerc, „Spider Money optimization algorithm for numerical optimization", Memetic Comput., vol. 6, no. 1, pp. 31-47, 2014 (DOI: 10.1007/s12293-013-0128-0).
- [30] J. Li, D. Wang, P. Zhu, J. Wang, and X. You, „Downlink spectra efficiency of distributed massive MIMO systems with linear beamforming under pilot contamination", IEEE Trans. on Veh. Technol., vol. 67, no. 2, pp. 1130-1145, 2018 (DOI: 10.1109/TVT.2017.2733532).
- [31] W. Yuan, X. Yang, and R. Xu, „A novel pilot decontamination scheme for uplink massive MIMO systems", Procedia Comp. Sci., vol. 131, pp. 72-79, 2018 (DOI: 10.1016/j.procs.2018.04.187).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2fbebdb6-c78c-4805-9a78-48225864e3fd