PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crystal Structure and Thermal Behaviour of Imidazolium 2,4,5-Trinitroimidazolate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, imidazolium 2,4,5-trinitroimidazolate was obtained from 2,4,5-tri-iodoimidazole in a yield of 48%. Single-crystal X-ray diffraction analysis showed that this compound belongs to the triclinic crystal system with space group P-1. Thermogravimetric-differential scanning calorimetry (TG-DSC) was performed under a nitrogen atmosphere at heating rates of 5, 10, 15 and 20 °C·min−1. Compound 3 clearly exhibits an exothermic decomposition. The activation energy (E) and pre-exponential factor (lnA) calculated by the Kissinger method were 113.67 kJ·mol−1 and 25.30 s−1, respectively. The E values obtained by the FWO and KAS methods changed slightly from 103.33 to 113.69 kJ·mol−1 and from 101.52 to 111.97 kJ·mol−1, respectively, which makes us believe that its thermal decomposition can be described using only one reaction model. The Šatava-Šesták method and the compensation effect were used to study the thermal decomposition mechanism of imidazolium 2,4,5-trinitroimidazolate. [Formula] is regarded as the most appropriate thermal decomposition kinetic equation. The impact sensitivity, friction sensitivity, detonation velocity and explosion pressure of imidazolium 2,4,5-trinitroimidazolate were 43 cm, 46%, 7056.9 m·s−1 and 1.9703 · 1010 Pa (ρ = 1.538 g·cm−3), respectively. Imidazolium 2,4,5-trinitroimidazolate is incompatible with RDX, HMX, TKX-50 and CL-20.
Rocznik
Strony
547--563
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • School of Chemical Engineering and Technology, North University of China, 030051 Taiyuan, Shanxi, China
autor
  • School of Chemical Engineering and Technology, North University of China, 030051 Taiyuan, Shanxi, China
autor
  • School of Chemical Engineering and Technology, North University of China, 030051 Taiyuan, Shanxi, China
  • School of Chemical Engineering and Technology, North University of China, 030051 Taiyuan, Shanxi, China
autor
  • Oriental Chemical Co., Ltd., 441403 Xiangyang, Hubei, China
Bibliografia
  • [1] Breccia, A.; Cavalleri, B.; Adams, G.E. Nitroimidazoles: Chemistry, Pharmacology and Clinical Applications. Springer, New York, 1982, pp. 15-18; ISBN 978-0-387- 98069-0.
  • [2] Crozet, M.D.; Remusat, V.; Curti, C.; Vanelle, P. Rapid Synthesis of New 5-Nitroimidazoles as Potential Antibacterial Drugs via VNS Procedure. Synth. Commun. 2007, 38: 3639-3646.
  • [3] Bulusu, S.; Damavarapu, R.; Autera, J.R.; Behrens, R.J.; Minier, L.M. Thermal Rearrangement of 1,4-Dinitroimidazole to 2,4-Dinitroimidazole: Characterization and Investigation of the Mechanism by Mass Spectrometry and Isotope Labeling. J. Phys. Chem. 1995, 99: 5009-5015.
  • [4] Rice, B.M.; Hare, J.J. A Quantum Mechanical Investigation of the Relation Between Impact Sensitivity and the Charge Distribution in Energetic Molecules. J. Phys. Chem. A. 2002, 106: 1770-1783.
  • [5] Badgujar, D.M.; Talawar, M.B.; Mahulikar, P.P. Review of Promising Insensitive Energetic Materials. Cent. Eur. J. Energ. Mater. 2017, 14(4): 821-843.
  • [6] Szala, M.; Lewczuk, R. New Synthetic Methods for 4,4’,5,5’-Tetranitro-2,2’-bi-1H-imidazole (TNBI). Cent. Eur. J. Energ. Mater. 2015, 12(2): 261-270.
  • [7] Lewczuk, R.; Szala, M.; Rećko, J.; Cudziło, S.; Klapotke, T.M.; Trzciński, W.A.; Szymańczyk, L. Explosive Properties of 4,4’,5,5’-Tetranitro-2,2’-bi-1H-imidazole Dihydrate. Cent. Eur. J. Energ. Mater. 2016, 13(3): 612-626.
  • [8] Bogusz, R.; Rećko, J.; Magnuszewska, P.; Lewczuk, R. Application of the Energetic Complex [Cu(TNBI)(NH3)2(H2O)] in Heterogeneous Solid Rocket Propellants. Cent. Eur. J. Energ. Mater. 2018, 15(2): 391-402.
  • [9] Li, Y.N.; Shu, Y.J.; Wang, Y.L.; Wang, B.Z.; Zhang, S.Y.; Bi, F.Q. Synthesis, Structure and Energetic Properties of a Catenated N6, Polynitro Compound: 1,1’-Azobis(3,5-dinitropyrazole). Cent. Eur. J. Energ. Mater. 2017, 14(2): 321-335.
  • [10] Cho, J.R.; Kim, K.J.; Cho, S.G.; Kim, J.K. Synthesis and Characterization of 1-Methyl-2,4,5-Trinitroimidazole(MTNI). J. Heterocycl. Chem. 2002, 39: 141-147.
  • [11] Novikov, S.S.; Khmel’nitskii, L.I.; Lebedev, O.V.; Sevost’yanova, V.V.; Epishina, L.V. Nitration of Imidazoles with Various Nitrating Agents. Chem. Heterocycl. Compd. 1970, 6: 465-469.
  • [12] Katritzky. A.R; Cundy, D.J; Chen, J. Polyiodoimidazoles and Their Nitration Products. J. Energ. Mater. 1993, 11: 345-352.
  • [13] Gao, H.X.; Ye, C.F.; Gupta, O.D.; Xiao, J.C.; Hiskey, M.A.; Twamley, B.; Shreeve, J.M. 2,4,5-Trinitroimidazole-Based Energetic Salts. Chem. Eur. J. 2007, 13: 3853-3860.
  • [14] Bmnings, K.J. Preparation and Properties of the Iodohistidines. J. Am. Chem. Soc. 1947, 69: 205-208.
  • [15] Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. Sect. A. 2008, 64: 112-114.
  • [16] Ozawa, T. A New Method Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn. 1965, 38: 1881-1886.
  • [17] Kissinger, H.E. Reaction Kinetics in Differential Thermal Analysis. J. Anal. Chem. 1957, 29: 1702-1706.
  • [18] Kissinger, H.E. Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis. J. Res. Nat. Bur. Sta. 1956, 57: 217-221.
  • [19] Akahira, T.; Sunose, T. Joint Convention of Four Electrical Institutes: Method of Determining Activation Deterioration Constant of Electrical Insulating Materials. Res. Rep. Chiba Inst. Technol. (Sci. Technol.) 1971, 16: 22-31.
  • [20] Brown, M.E.; Maciejewski, M.; Vyazovkin, S.; Nomen, R. Computational Aspects of Kinetic Analysis Part A: the ICTAC Kinetics Project-Data, Methods and Results. Thermochim. Acta 2000, 355: 125-143.
  • [21] Andrzejewski, M.; Marciniak, J.; Rajewski, K.W.; Katrusiak, A. Halogen and Hydrogen Bond Architectures in Switchable Chains of Di- and Trihaloimidazoles. Cryst. Growth. Des. 2015, 15(4): 1658-1665.
  • [22] Du, X.J.; Li, X.D.; Zou, M.S; Yang, R.J.; Pang, S.P.; Li, Y.C. Thermogravimetric Analysis and Kinetic Study of 1-Amino-1,2,3-Triazolium nitrate. Thermochim. Acta 2013, 570: 59-63.
  • [23] Slopiecka, K.; Bartocci, P.; Fantozzi, F. Thermogravimetric Analysis and Kinetic Study of Poplar Wood Pyrolysis. Appl. Energy. 2012, 97: 491-497.
  • [24] Chowdhury, A.; Thynell, S.T. Confined Rapid Thermolysis/FTIR/ToF Studies of Methylamino-triazolium-based Energetic Ionic Liquids. Thermochim. Acta 2010, 505: 33-40.
  • [25] Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data. Thermochim. Acta 2011, 520: 1-19.
  • [26] Hu, R.Z.; Gao, S.L.; Zhao, F.Q.; Zhen, S.Q.; Zhang, T.L.; Zhang, J.J. Thermoanalysis Kinetics. (in Chinese) 2nd ed., Science Press, Beijing, 2008, pp. 143-168; ISBN 978-7-03-020207-9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2fb99840-e8c7-42af-ba17-ec433c078f11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.