PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Production of Carbon Fibre Bulked Yarns by the Airflow Dispersion Method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wytwarzanie przędz puszystych z włókien węglowych metodą dyspersji przepływu powietrza
Języki publikacji
EN
Abstrakty
EN
Using carbon fibre tows as raw materials, carbon fibre bulk yarns were producedby the airflow dispersion method for the first time. The breaking strength, strength irregularity, yarn irregularity and hairiness index of the carbon fibre bulk yarn were used as evaluation indices, and preparation technology for carbon fibre bulk yarn was optimized using the orthogonal experimental method. Subsequently the disordered structure of homemade carbon fibre bulk yarn, the ability to fix the resin, and the surface contact angle were investigated. Finally infrared spectral analysis of the carbon fibre bulk yarn was carried out. Results show that the best preparation technology for carbon fibre bulk yarn is as follows: nozzle air pressure 0.45 MPa, spinning speed 150 m/min, and nozzle diameter 2.2 mm. The degree of disorder of fibres of T700 carbon fibre bulk yarn fibre is 18.70%~25.60%; as the degree of disorder of carbon fibre bulk yarn increases, the ability to fix the resin is enhanced. The process of carbon fibre tows producing bulk yarns is a physical one.
PL
W pracy wytworzono przędze puszyste z włókien węglowych metodą dyspersji przepływu powietrza, następnie zbadano ich wytrzymałość na rozerwanie, nierównomierność oraz włochatość. Przeprowadzono także spektralną analizę wiązki włókien węglowych w podczerwieni. Na podstawie otrzymanych wyników określono optymalne parametry wytwarzania przędz puszystych z włókien węglowych, tj.: ciśnienie powietrza w dyszy 0,45 MPa, prędkość wirowania 150 m/min i średnica dyszy 2,2 mm. Stopień nieuporządkowania włókien węglowych T700 wynosi 18,70 ~ 25,60%. Stwierdzono, że wraz ze wzrostem stopnia nieuporządkowania zwiększa się zdolność wiązania żywicy.
Rocznik
Strony
34--40
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Tianjin Polytechnic University, School of Textiles, Tianjin 300387, China
autor
  • Tianjin Polytechnic University, School of Textiles, Tianjin 300387, China
autor
  • Tianjin Polytechnic University, School of Textiles, Tianjin 300387, China
Bibliografia
  • 1. Sarıdağ S, Helvacıoğlu-Yiğit D, Özcan M, et al. Micro-computerized tomography analysis of cement voids and pull-out strength of glass fiber posts luted with self-adhesive and glass-ionomer cements in the root canal[J]. J. Adhes. Sci. Technol. 2016; 30(14): 15851595.
  • 2. Huang Y, Jiang M, Xu M, et al. Curing behavior and processability of BMI/3‐APN system for advanced glass fiber composite laminates[J]. J. Appl. Polym. Sci. 2016; 133(27): 43640.
  • 3. Munawar M A, Khan S M, Gull N, et al. Fabrication and characterization of novel zirconia filled glass fiber reinforced polyester hybrid composites[J]. J. Appl. Polym. Sci. 2016; 133(27): 1-9.
  • 4. Kulkova J, Moritz N, Huhtinen H, et al. Bioactive glass surface for fiber reinforced composite implants via surface etching by Excimer laser[J]. Med. Eng. Phys. 2016; 38(7): 664-670.
  • 5. Mastali M, Dalvand A, Sattarifard A R. The impact resistance and mechanical properties of reinforced self-compacting concrete with recycled glass fibre reinforced polymers[J]. J. Clean. Prod. 2016; 124: 312-324.
  • 6. Betanzos F B, Gimeno-Fabra M, Segal J, et al. Cyclic pressure on compression-moulded bioresorbable phosphate glass fibre reinforced composites[J]. Mater. Design. 2016; 100: 141-150.
  • 7. Nam S, Lee D, Kim J. Development of a fluoroelastomer/glass fiber composite flow frame for a vanadium redox flow battery (VRFB)[J]. Compos. Struct. 2016; 145: 113-118.
  • 8. Vazquez-Zuniga L A, Feng X, Kwon Y, et al. W-type highly erbium-doped active soft-glass fibre with high nonlinearity[J]. Electron. Lett. 2016; 52(12): 1047-1048.
  • 9. Rippe M P, Wandscher V F, Bergoli C D, et al. Effect of the frequency of mechanical pulses for fatigue aging testing on push-out bond strength between glass fiber posts and root dentin[J]. J. Adhes. Sci. Technol. 2016; 30(11): 1243-1252.
  • 10. Feo L, Luciano R, Misseri G, et al. Irregular stone masonries: Analysis and strengthening with glass fibre reinforced composites[J]. Compos. Part B: Eng. 2016; 92: 84-93.
  • 11. Ibáñez-Gutiérrez F T, Cicero S, Carrascal I A, et al. Effect of fibre content and notch radius in the fracture behaviour of short glass fibre reinforced polyamide 6: An approach from the Theory of Critical Distances[J]. Compos. Part B: Eng. 2016; 94: 299-311.
  • 12. Nicholas J, Mohamed M, Dhaliwal G S, et al. Effects of accelerated environmental aging on glass fiber reinforced thermoset polyurethane composites[J]. Compos. Part B: Eng. 2016; 94: 370-378.
  • 13. Li D, Xu W, Kuan P, et al. Spectroscopic and laser properties of Ho3+ doped lanthanum‐tungsten‐tellurite glass and fiber[J]. Ceram. Int. 2016; 42(8): 10493-10497.
  • 14. Tavanai H, Morshed M, Hosseini S M. Effects of on-line melt blending of polypropylene with polyamide 6 on the bulk and strength of the resulting BCF yarn[J]. Iran. Polym. J. 2003; 12: 421-430.
  • 15. Jiang Y, Wang S Y. Characterization & EIB testing of the bulking property of yarn[J]. J. Donghua Univ. 2007; 33: 760-763.
  • 16. Shaikhzadeh Najar S, Etrati S M, Seyed-Esfahani M H, et al. The effect of blend ratios of unrelaxed and relaxed acrylic fibres on physical properties of high-bulk worsted yarns[J]. J. Text. I. 2005; 96(5): 311-318.
  • 17. Wang R, Gao Y, Zong Y, et al. Testing and Discussion on the Morphology and Bulk of the Textured Yarn by EIB[J]. J. Donghua Univ. 2004; 30(5): 65-68.
  • 18. Sadeghi-Sadeghabad M, Tavakoli M, Alamdar-Yazdi A, et al. Coincident optimization of specific volume and tensile strength at acrylic high-bulked yarn using Taguchi method[J]. J. Text. I. 2015; 106(12): 1328-1337.
  • 19. Yang S, Li L, Xiao T, et al. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation[J]. Appl. Surf. Sci. 2016; 383: 142-150.
  • 20. Fu Z, Liu B, Deng Y, et al. The suitable itaconic acid content in polyacrylonitrile copolymers used for PAN‐based carbon fibers[J]. J. Appl. Polym. Sci. 2016; 133(38): 110.
  • 21. Xia L, Zhang T, Chai Z, et al. Effect of boron doping on fracture behavior of carbon fiber reinforced lithium aluminosilicate glass ceramics matrix composites[J]. J. Eur. Ceram. Soc. 2016; 36: 3513-3522.
  • 22. Liu B, Wang H, Chen Y, et al. Pt nanoparticles anchored on Nb2O5 and carbon fibers as an enhanced performance catalyst for methanol oxidation[J]. J. Alloys Compd. 2016; 682: 584-589.
  • 23. Sun H, Memon S A, Gu Y, et al. Degradation of carbon fiber reinforced polymer from cathodic protection process on exposure to NaOH and simulated pore water solutions[J]. Mater. Struct. 2016; 49: 5273-5283.
  • 24. Dong K, Liu K, Zhang Q, et al. Experimental and numerical analyses on the thermal conductive behaviors of carbon fiber/epoxy plain woven composites[J]. Int. J. Heat Mass Tran. 2016; 102: 501-517.
  • 25. Sha J J, Li J, Wang S H, et al. Improved microstructure and fracture properties of short carbon fiber-toughened ZrB2-based UHTC composites via colloidal process[J]. Int. J. Refract. Met. H. 2016; 60: 68-74.
  • 26. Rodríguez-Uicab O, Avilés F, Gonzalez-Chi P I, et al. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers[J]. Appl. Surf. Sci. 2016; 385: 379-390.
  • 27. Salazar P, Martín M, O’Neill R D, et al. Glutamate microbiosensors based on Prussian Blue modified carbon fiber electrodes for neuroscience applications: In-vitro characterization[J]. Sensor Actuat. B: Chem. 2016; 235: 117-125.
  • 28. Du B, Hong C, Zhou S, et al. Multi-composition coating for oxidation protection of modified carbon-bonded carbon fiber composites[J]. J. Eur. Ceram. Soc. 2016; 36: 33033310.
  • 29. Liu Y J, Zhao X M, Tuo X. A study on the performance of the air textured yarn of glass fiber[J]. J. Funct. Mater. 2016; 47(1): 1082-1086.
  • 30. Liu Y J, Zhao X M, Li W B, et al. A Study on the Performance of Fancy Bulk Yarn of Glass Fiber[J]. J. Silk 2015; 1(52): 5-16.
  • 31. Tavanai H, Morshed M, Moghaddam A. Production of high bulk polyester filament yarn[J]. J. Text. I. 2013; 104(1): 1-6.
  • 32. Liu L, Tian B, Sun W R, et al. Bright–dark vector soliton solutions for a generalized coupled Hirota system in the optical glass fiber[J]. Commun. Nonlinear Sci. 2016; 39: 545555.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2fb61a97-7b0c-48ce-b189-980eee245343
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.