PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stopband effect and sound transmission loss of periodic locally resonant structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the theoretical aspects of sound attenuation of periodic structures with locally resonant elements. The stopband effect in frequency characteristics of infinite periodic structures created by the resonant elements is investigated. The dispersion curves calculation procedure is described in details with the influence of resonance frequency and mass of added locally resonant structure on width of the obtained stopband is investigated. The theoretical formulation for calculation of the sound transmission loss for periodic structure is derived. The performance of the structure with locally resonant elements is evaluated based on dispersion curves obtained for an infinite periodic structure and transmission loss calculated for finite structure is conducted.
Rocznik
Strony
art. no. 2021105
Opis fizyczny
Bibliogr. 16 poz., wykr.
Twórcy
autor
  • Akademia Górniczo-Hutnicza w Krakowie, ul. A. Mickiewicza 30, 30-049 Kraków
  • Silencions Sp. z o.o., ul. Bierutowska 57-59/Budynek 5, 51-317 Wrocław
  • Silencions Sp. z o.o., ul. Bierutowska 57-59/Budynek 5, 51-317 Wrocław
  • Akademia Górniczo-Hutnicza w Krakowie, ul. A. Mickiewicza 30, 30-049 Kraków
Bibliografia
  • 1. Y. Tang, S. Ren, H. Meng, F. Xin, L. Huang, T. Chen, et al. Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound. Sci. Rep., 7:43340, 2017.
  • 2. S. Zuo, H. Huang, X. Wu, M. Zhang, T. Ni. Low-frequency band gap of locally resonant phononic crystals with a dual-base plate. J. Acoust. Soc. Am. ,143:1326-1332, 2018.
  • 3. A. Hall, G. Dodd, E. Calius. Diffuse field measurements of Locally resonant partitions. Australian Acoustical Society Annual Conference (AAS2017), 1-10, 2017.
  • 4. N. Jiménez, W. Huang, V. Romero-García, V. Pagneux, J.P. Groby. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Appl. Phys. Lett., 109:12902, 2016.
  • 5. C.C. Claeys, K. Vergote, P. Sas, W. Desmet. On the potential of tuned resonators to obtain low-frequency vibrational stop bands in periodic panels. J. Sound Vib., 332(6):1418-1436, 2013.
  • 6. L. Brillouin. Wave propagation in periodic structures: electric filters and crystal lattices. 1953.
  • 7. F.A. Pires, L. Sangiuliano, H. Denayer, E. Deckers, C. Claeys, W. Desmet. Suppression of flow-induced noise and vibrations by locally resonant metamaterials. Aiaa Aviat. 2020 Forum, 1-10, 2020.
  • 8. A.J. Hall, G. Dodd, E.P. Calius. Multiplying resonances for attenuation in mechanical metamaterials: Part 1 - Concepts, initial validation and single layer structures. Appl. Acoust., 170:107513, 2020. DOI: https://doi.org/10.1016/j.apacoust.2020.107513
  • 9. C. Claeys, E. Deckers, B. Pluymers, W. Desmet. A lightweight vibro-acoustic metamaterial demonstrator: Numerical and experimental investigation. Mech. Syst. Signal Process., 70-71:853-880, 2016.
  • 10. M. Zientek. Broadband vibration control through periodic arrays of locally resonant inclusions. PhD Thesis, Università degli Studi di Udine, 2018.
  • 11. R. Szilard. Theories and applications of plate analysis: classical, numerical and engineering methods. Appl. Mech. Rev., 57(6):B32-B33, 2004.
  • 12. G. De Abreu, J.F. Ribeiro, V. Steffen Jr. Finite element modeling of a plate with localized piezoelectric sensors and actuators. J. Brazilian Soc. Mech. Sci. Eng., 26(2):117-128, 2004.
  • 13. M. Oudich, X. Zhou, M.B. Assouar. General analytical approach for sound transmission loss analysis through a thick metamaterial plate. Journal of Applied Physics, 116:193509, 2014.
  • 14. L. Van Belle, W. Desmet. Damping in a locally resonant metamaterial using inverse and direct unit cell modelling. 11th International Congress on Engineered Materials Platforms for Novel Wave Phenomena - Metamaterials 2017, 364-366, 2017.
  • 15. C. Valencia, J. Gomez, N. Guarín-Zapata. A general-purpose element-based approach to compute dispersion relations in periodic materials with existing finite element codes. J. Theor. Comput. Acoust. 28(3): 1950005, 2020.
  • 16. A. Hall, E. Calius, G. Dodd, E. Wester, K. Chan. Development of locally resonant structures for sonic barriers. Build. Acoust., 21(3):199-220, 2014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2fabeafc-d026-4fe6-8431-1bc95ee97fdc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.