PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seasonal nutrient resorption and lignin change in leaves of Turkey Oak on northern and southern slope aspects

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nutrient resorption is a critical factor for nutrient use strategies developed by plants. Especially nitrogen (N) and phosphorus (P) are the most essential reabsorbed nutrient elements. The leaves' N and P concentrations are closely related to foliar lignin contents. The study aimed to investigate the effects of northern and southern slope aspects on the foliar nutrient resorption in the Mediterranean species of Turkey oak (Quercus cerris var. cerris). The relationships among selected leaf traits, foliar nutrient resorption of N and P, the seasonal lignin change, and the soil traits were analyzed. A principal component analysis was performed to interpret the effect of soil properties on foliar N, P, and lignin concentrations. N resorption efficiency (78.84%) was higher on the northern slope. P resorption efficiency (53.87%) and seasonal lignin change (69.87) were higher on the southern slope. As a result, the slope aspect affects the foliar N, P, and lignin concentrations. Also, foliar lignin concentration was negatively correlated with N resorption efficiency and positively correlated with P resorption efficiency.
Rocznik
Strony
89--102
Opis fizyczny
Bibliogr. 78 poz., rys., tab., wykr.
Twórcy
  • Karamanoglu Mehmetbey University, Kamil Özdag Science Faculty, Department of Biology, 70200, Karaman, Turkey
Bibliografia
  • 1. Aerts R. 1996 - Nutrient resorption from senescing leaves of perennials: are there general patterns - Journal of Ecology, 84: 597-608.
  • 2. Aerts R., De Caluwe H. 1997 - Nutritional and plant-mediated controls on leaf litter decomposition of Carex species - Ecology, 78: 244-260.
  • 3. Aerts R.S., Chapin F. 2000 - The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns - Advances in Ecological Research, 30: 1-67.
  • 4. Ai Z.M., He L.R., Xin Q., Yang T., Liu G.B., Xue, S. 2017 - Slope aspect affects the nonstructural carbohydrates and C:N: P stoichiometry of Artemisia sacrorum, on the Loess Plateau in China - Catena, 152: 9-17.
  • 5. Aksekili E., Kilic D.D., Kutbay H.G. 2007 - Foliar nutrient dynamics and foliar resorption in Quercus brantii Lindley along an elevational gradient - Pakistan Journal of Biological Sciences, 10: 3778-3785.
  • 6. Aldrich P.R., Cavender-Bares J. 2011 - Quercus (In: Wild crop relatives: genomic and breeding resources, Ed. C. Cole) - Springer.
  • 7. Allen S.E., Grimshaw H.M., Rowland A.P. 1986 - Chemical analysis (In: Methods in plant Ecology, Eds P.D. Moore, S.B. Chapman) - Blackwell Scientific Publication, Oxford, London, pp. 285-344.
  • 8. Allison S.D. 2005 - Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments - Ecology Letters, 8: 626-635.
  • 9. Austin A.T., Ballaré C.L. 2010 - Dual role of lignin in plant litter decomposition in terrestrial ecosystems - PNAS, 107(10): 4618-4622.
  • 10. Blasi C., Di Pietro R., Filesi L. 2004 - Syn-taxonomical revision of Quercetalia pubescenti-petraeae in the Italian Peninsula - Fitosociologia, 41: 87-164.
  • 11. Boerner R.E.J., Koslowsky S.D. 1989 - Microsite variations in soil chemistry and nitrogen mineralization in a beech-maple forest - Soil Biology and Biochemistry, 21: 795-801.
  • 12. Cao J., Wang X., Adamowski J.F., Biswas A., Liu C., Chang Z., Feng Q. 2020 - Response of leaf stoichiometry of Oxytropis ochrocephala to elevation and slope aspect - Catena, 194: 104772.
  • 13. Chapin F.S. 1980 - The mineral nutrition of wild plants - Annual Review of Ecology and Systematics, 11: 233-260.
  • 14. Constantinides M., Fownes J.H. 1994 - Nitrogen mineralization from leaves and litter of tropical plants: Relationship to nitrogen, lignin and soluble polyphenol concentrations - Soil Biology and Biochemistry, 26: 49-55.
  • 15. Cornwell W.K., Cornelissen J.H., Amatangelo K., Dorrepaal E., Eviner V.T., Godoy O., Hobbie S.E., Hoorens B., Kurokawa H., Perez-Harguindeguy N., Quested H.M., Santiago L.S., Wardle D.A., Wright I.J., Aerts R., Allison S.D., van Bodegom P., Brovkin V., Chatain A., Callaghan T.V., Diaz S., Garnier E., Gurvich D.E., Kazakou E., Klein J.A., Read J., Reich P.B., Soudzilovskaia N.A., Vaieretti M.V., Westoby, M. 2008 - Plant species traits are the predominant control on litter decomposition rates within biomes worldwide - Ecology Letters, 11: 1065-1071.
  • 16. Cote B., Fyles J.W., Djalilvand H. 2002 - Increasing N and P resorption efficiency and proficiency in northern deciduous hardwoods with decreasing foliar N and P concentrations - Annals of Forest Science, 59: 275-281.
  • 17. Covelo F., Rodriguez A., Gallardo A. 2008 - Spatial pattern and scale of leaf N and P resorption efficiency and proficiency in a Quercus robur population - Plant and Soil, 311(1-2): 109-119.
  • 18. de la Riva E.G., Marañón T., Violle C., Villar R., Pérez-Ramo I.M. 2017 - Biogeochemical and ecomorphological niche segregation of Mediterranean woody species along a local gradient - Frontiers in Plant Science, 8: 1242.
  • 19. Distel R.A., Moretto A.S., Didone N.G. 2003 - Nutrient resorption from senescing leaves in two Stipa species native to central Argentina - Austral Ecology, 28: 210-215.
  • 20. Dobrylovská D. 2001 - Litter decomposition of red oak, larch and lime tree and its effect on selected soil characteristics - Journal of Forest Science, 47: 477-485.
  • 21. Du B.M., Ji H.W., Peng C., Liu X.J., Liu C.J. 2017 - Altitudinal patterns of leaf stoichiometry and nutrient resorption in Quercus variabilis in the Baotianman Mountains, China - Plant and Soil, 413: 193-202.
  • 22. Elser J.J., Bracken M.E.S., Cleland E.E., Gruner D.S., Harpole W.S., Hillebrand H., Ngai J.T., Seablom E.W., Shurin J.B., Smith J.E. 2007 - Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems - Ecology Letters, 10: 1135-1142.
  • 23. Enescu R.E., Spârchez G. 2014 - Mineral nutrition of Romanian white oak species: a short review - Bulletin of the Transilvania University of Brasov. Forestry, Wood Industry, Agricultural Food Engineering Series II, 7(1): 13.
  • 24. Fisher J.B., Malhi Y., Torres I.C., Metcalfe D.B., van de Weg M.J., Meir P., Silva-Espejo J.E., Huasco, W.H. 2013 - Nutrient limitation in rainforests and cloud forests along a 3000 m elevation gradient in the Peruvian Andes - Oecologia, 172: 889-902.
  • 25. Freschet G.T., Cornelissen J.H.C., van Logtestijn R.S.P., Aerts R. 2010 - Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits - New Phytologist, 186: 879-889.
  • 26. Gerdol R., Iacumin P., Brancaleoni L. 2019 - Differential effects of soil chemistry on the foliar resorption of nitrogen and phosphorus across altitudinal gradients - Functional Ecology, 33: 1351-1361.
  • 27. George B., Suttie E., Merlin A., Deglise X. 2005 - Photodegradation and photostabilisation of wood: The state of the art - Polymer Degradation and Stability, 88: 268-274.
  • 28. George E., Seith B., Schaeffer C., Marschner H. 1997 - Responses of Picea, Pinus and Pseudotsuga roots to heterogeneous nutrient distribution in soil - Tree Physiology, 17(1): 39-45.
  • 29. Güsewell S., Koerselman W., Verhoeven J.T.A. 2003 - Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands - Ecological Applications, 13: 372-384.
  • 30. Güsewell S. 2004 - N:P ratios in terrestrial plants: variation and functional significance - New Phytologist, 164: 243-266.
  • 31. Güsewell S. 2005 - Nutrient resorption of wetland graminoids is related to the type of nutrient limitation - Functional Ecology, 19: 344-354.
  • 32. Hagen-Thorn A., Armolaitis K., Callesen I., Stjernquist I. 2004 - Macronutrients in tree stems and foliage: a comparative study of six temperate forest species planted at the same sites - Annals of Forest Science, 61: 489-498.
  • 33. Hayes P., Turner B.L., Lambers H., Laliberte E., Bellingham P. 2014 - Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-millionyear dune chronosequence - Journal of Ecology, 102: 396-410.
  • 34. Hidaka A., Kitayama K. 2015 - Physiological linkage in co-variation of foliar nitrogen and phosphorus in tropical tree species along a gradient of soil phosphorus availability - Journal of Tropical Ecology, 31: 221-229.
  • 35. Hobbie S.E., Reich P.B., Oleksyn J., Ogdahl M., Zytkowiak R., Hale C., Karolewski P. 2006 - Tree species effects on decomposition and forest floor dynamics in a common garden - Ecology, 87: 2288-2297.
  • 36. Hon D.N.S. 2001 - Wood and cellulosic chemistry - Marcel Decker, New York.
  • 37. Huang J., Wang X., Yan E. 2007 - Leaf nutrient concentration, nutrient resorption and litter decomposition in an evergreen broadleaved forest in eastern China - Forest Ecology and Management, 239: 150-158.
  • 38. Kamei J., Pandey H.N., Barik S.K. 2009 - Tree species distribution and its impact on soil properties, and nitrogen and phosphorus mineralization in a humid subtropical forest ecosystem of northeastern India - Canadian Journal of Forest Research, 39(1): 36-47.
  • 39. Karavin N. 2010 - Bir Quercus cerris L. var. cerris ormanında bulunan yaprak döken (Quercus cerris L. var. cerris) ve yaprak dökmeyen (Phillyrea latifolia L.) iki türde yaprakta N ve P rezorbsiyonunun, dekompozisyonunun ve mineral besin maddesi değişiminin incelenmesi - Ondokuz Mayıs University.
  • 40. Kilic D., Kutbay H.G., Ozbucak T.B., Hüseyinova R. 2010 - Foliar resorption in Quercus petraea subsp. iberica and Arbutus andrachne along an elevational gradient - Annals of Forest Science, 7: 213-220.
  • 41. Killingbeck K.T. 1996 - Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency - Ecology, 77: 1716-1727.
  • 42. Koerselman W., Meuleman A.F.M. 1996 - The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation - Journal of Applied Ecology, 33: 1441-1450.
  • 43. Kost J.A., Boerner R.E.J. 1985 - Foliar nutrient dynamics and nutrient use efficiency in Cornus florida - Oecologia (Berlin), 66: 602-606.
  • 44. Lal C.B., Annapurna C., Raghubanshi A.S., Singh J.S. 2001 - Effect of leaf habit and soil type nutrient resorption and conservation in woody species of a dry tropical environment - Canadian Journal of Botany, 79: 1066-1075.
  • 45. Li L.J., Zeng D.H., Ma R., Yu Z.Y. 2012 - Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semi-arid grassland, China - Plant, Soil and Environment, 58: 446-451.
  • 46. Li X., Liu J., Fan J., Ma Y., Ding S., Zhong Z., Wang D. 2015 - Combined effects of nitrogen addition and litter manipulation on nutrient resorption of Leymus chinensis in a semi-arid grassland of northern China - Plant Biology, 17: 9-15.
  • 47. Ma Z., Yang W., Wu F., Tan B. 2017 - Effects of light intensity on litter decomposition in a subtropical region - Ecosphere, 8(4): e01770.
  • 48. Mafongoya P.L., Giller K.E., Palm C.A. 1998 - Decomposition and nitrogen release patterns of tree prunings and litter - Agroforestry Systems, 38: 77-97.
  • 49. Minoletti M.L., Boerner R.E.J. 1994 - Drought and site fertility effects on foliar nitrogen and phosphorus dynamics and nutrient resorption by the forest understory shrub Viburnum acerifolium L. - American Midland Naturalist, 131: 109-119.
  • 50. Moreira-Vilar F.C., Siqueira-Soares R.C., Finger-Teixeira A., de Oliveira D.M., Ferro A.P., de Rocha G.J., Ferrarese M.L.L., dos Santos W.D., Ferrarese-Filho O. 2014 - The Acetyl Bromide Method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than Klason and Thioglycolic Acid Methods - PLoS ONE, 9(10): e110000.
  • 51. Niinemets U., Tamm U. 2005 - Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands - Tree Physiology, 25: 1001-1014.
  • 52. Norby R.J., Long T.M., Hartz-Rubin J.S., O'Neill E.G. 2000 - Nitrogen resorption in senescing tree leaves in a warmer. CO2-enriched atmosphere - Plant Soil, 224: 15-29.
  • 53. Northup R.R., Dahlgren R.A., McColl J.G. 1998 - Polyphenols as regulators of plant-litter-soil interactions in Northern California's pygmy forest: A positive feedback - Biogeochemistry, 42: 189-220.
  • 54. Ordonez J.C., van Bodegom P.M., Witte J.P.M., Wright I.J., Reich P.B., Aerts R., Sykes M. 2009 - A global study of relationships between leaf traits, climate and soil measures of nutrient fertility - Global Ecology and Biogeography, 18: 137-149.
  • 55. Osono T., Takeda H. 2001 - Organic chemical and nutrient dynamics in decomposing beech leaf litter in relation to fungal ingrowth and succession during 3-year decomposition processes in a cool temperate deciduous forest in Japan - Ecological Research, 16: 649-670.
  • 56. Pilate G., Dejardin A., Leple J.C. 2012 - Field trials with lignin-modified transgenic trees, in: Lignins: biosynthesis, biodegradation and bioengineering - Academic Press.
  • 57. Poorter H., Niinemets Ü., Poorter I., Wright I.J., Villar R. 2009 - Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis - New Phytologist, 182: 565-588.
  • 58. Reich P.B., Oleksyn J., Modrzynski J., Mrozinski P., Hobbie S.E., Eissenstat D.M., Chorover J., Chadwick O.A., Hale C.M., Tjoelker M.G. 2005 - Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species - Ecology Letters, 8: 811-818.
  • 59. Rentería L.Y., Jaramillo V.J., Martínez-Yrízar A., Pérez-Jiménez A. 2005 - Nitrogen and phosphorus resorption in trees of a Mexican tropical dry forest - Trees, 19: 431-441.
  • 60. Rentería L.Y., Jaramillo V.J. 2011 - Rainfall drives leaf traits and leaf nutrient resorption in a tropical dry forest in Mexico - Oecologia, 165: 201-211.
  • 61. Roem W.J., Berendse F. 2000 - Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities - Biological Conservation, 92: 151-161.
  • 62. Sariyildiz T., Anderson J.M. 2003 - Decompositionof sun and shade leaves from three deciduoustree species, as affected by their chemicalcomposition - Biology and Fertility of Soils, 37(3): 137-146.
  • 63. Sariyildiz T., Anderson J.M. 2005 - Variation in the chemical composition of green leaves and leaf litters from three deciduous tree species growing on different soil types - Forest Ecology and Management, 210(1-3): 303-319.
  • 64. Savaci G., Sariyildiz T. 2020 - Effects of stand age on litter quality, decomposition rate and nutrient release of Kazdagi fir (Abies nordmanniana subsp. equi-trojani) - iForest, 13: 396-403.
  • 65. Siegert C.M., Levia D.F., Hudson S.A., Dow-tin A.L., Zhang F., Mitchell M.J. 2016 - Small-scale topographic variability influences tree species distribution and canopy throughfall partitioning in a temperate deciduous forest - Forest Ecology and Management, 359: 109-117.
  • 66. Tang L., Han W., Chen Y., Fang J. 2013 - Resorption proficiency and efficiency of leaf nutrients in woody plants in eastern China - Journal of Plant Ecology, 6: 408-417.
  • 67. Teklay T. 2004 - Seasonal dynamics in the concentrations of macronutrients and organic constituents in green and senesced leaves of three agroforestry species in southern Ethiopia - Plant and Soil, 267(1): 297-307.
  • 68. Terzi M., Ciaschetti G., Fortini P., Rosati L., Viciani D., Di Pietro R. 2020 - A revised phytosociological nomenclature for the Italian Quercus cerris woods - Mediterranean Botany, 41(1): 101-120.
  • 69. Thapa N., Barik S.K., Upadhaya K., Lakadong N.J. 2020 - Local edaphic factors influence leaf nutrient resorption efficiency of evergreen and deciduous trees: a case study from montane subtropical old-growth and regenerating forests of Meghalaya - Tropical Ecology, 61(1): 21-31.
  • 70. Ubaldi D. 2003 - La vegetazione boschiva d'Italia (manuale di Fitosociologia forestale) - Clueb, Bologna (in Italian).
  • 71. Van Heerwaarden L., Toet S., Aerts R. 2003 - Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions - Oikos, 101: 664-669.
  • 72. Vergutz L., Manzoni S., Porporato A., Novais R.F., Jackson R.B. 2012 - Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants - Ecological Monographs, 82: 205-220.
  • 73. Villar R., Robleto J. R., De Jong Y., Poorter H. 2006 - Differences in construction costs and chemical composition between deciduous and evergreen woody species are small as compared to differences among families - Plant, Cell and Environment, 29: 1629-1643.
  • 74. Westoby M., Falster D.S., Moles A.T., Vesk P.A., Wright I.J. 2002 - Plant ecological strategies: some leading dimensions of variation between species - Annual Review of Ecology and Systematics, 33: 125-159.
  • 75. White J.D., Scott N.A. 2006 - Specific leaf area and nitrogen distribution in New Zealand forests: Species independently respond to intercepted light - Forest Ecology and Management, 226: 319-329.
  • 76. Wright I.J., Westoby M. 2003 - Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species - Functional Ecology, 17: 10-19.
  • 77. Yan T., Jiaojun Z., Kai Y. 2018 - Leaf nitrogen and phosphorus resorption of woody species in response to climatic conditions and soil nutrients: a meta-analysis - Journal of Forestry Research, 29: 905-913.
  • 78. Zhou L., Addo-Danso S.D., Wu P., Li S., Zou X., Zhang Y., Ma X. 2016 - Leaf resorption efficiency in relation to foliar and soil nutrient concentrations and stoichiometry of Cunninghamia lanceolata with stand development in southern China - Journal of Soils and Sediments, 16: 1-12.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2fa9094a-c8fd-4bb1-9558-82f829e705e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.